Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T13:25:50.306Z Has data issue: false hasContentIssue false

The Effects of the Electron-Phonon Interaction on the Vibrational Anomalies and Polymorphism in Titanium

Published online by Cambridge University Press:  10 February 2011

J. L. Gavartin
Affiliation:
Department of Materials Science and Engineering, The University of Liverpool, Liverpool, L69 3BX, U.K., j.gavartin@liverpool.ac.uk Institute of Chemical Physics, University of Latvia, LV1586 Riga, Latvia
D. J. Bacon
Affiliation:
Department of Materials Science and Engineering, The University of Liverpool, Liverpool, L69 3BX, U.K., j.gavartin@liverpool.ac.uk
Get access

Abstract

We apply the frozen phonon and molecular dynamics methods within the semiempirical orthogonal tight-binding framework to study the anomalous behaviour of the (0001) optical longitudinal (LO) and transverse (TO) phonons in the low temperature hep phase of Ti, and the ⅔[111]L and ½[110]T1 phonons in the high temperature bec phase. We demonstrate that, in agreement with previous findings in Zr, the anomalous thermal frequency shifts in hep Ti are related to the strong coupling of the electron density of states (DOS) to the particular lattice distortions. The distortions along the bec ⅔[111]L and ½[110]T1 phonons also significantly affect the DOS, resulting in the instability of these modes at low temperatures and triggering the bcc-hep and bcc-ω phase transformations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stassis, C., Arch, D., Harmon, B.N., and Wakabayashi, N., Phys. Rev. B 19, p. 181 (1979). - Titanium;Google Scholar
Stassis, C., Zarestky, J., Arch, D., McMasters, O.D., and Harmon, B.N., Phys. Rev. B 18, p. 2632 (1978). - Zirconium.Google Scholar
2. Petry, W., Heiming, A., Trampenau, J., Alba, M., Herzig, C., Schober, H.R., and Vogl, G., Phys. Rev. B 43, p. 10933 (1991) - Titanium;Google Scholar
Heiming, A., Petry, W., Trampenau, J., Alba, M., Herzig, C., Schober, H.R., and Vogl, G., Phys. Rev., B 43, p. 10948 (1991) - Zirconium.Google Scholar
3. Varma, C.M. and Weber, W., Phys. Rev B 19, p. 6142 (1979).Google Scholar
4. Liu, S.H., Stassis, C., and Ho, K.-M., Phys. Rev. B 24, p. 5093 (1981).Google Scholar
5. Ho, K.-M., Fu, C.L., Harmon, B.N., Weber, W., and Hamann, D.R., Phys. Rev. Lett. 49, p. 673 (1982);Google Scholar
Ho, K.-M., Fu, C.L., and Harmon, B.N., Phys. Rev. B 29, p. 1575 (1984);Google Scholar
Ye, Y.Y., Ho, K.M., Harmon, B.N., and Lindgard, P.-A., Phys. Rev. Lett. 58, p. 1769 (1987).Google Scholar
6. Gavartin, J.L., Bacon, D.J., Comp. Materials Science, (1997) (in print).Google Scholar
7. Horsfield, A.P., Bratkovsky, A.M., Fearn, M., Pettifor, D.G., Aoki, M., Phys. Rev. B 53, p. 12694 (1996);Google Scholar
Horsfield, A.P., Bratkovsky, A.M., Pettifor, D.G., Aoki, M., Phys. Rev. B, 53, p. 1656 (1996).Google Scholar
8. Girschik, A., Bratkovsky, A.M., Pettifor, D.G., and Vitek, V., Phil. Mag. A, (in print), 1997.Google Scholar
9. Cheng, Yang-Tse and Meng, Wen-Jin, Phys. Rev. Lett. 76, 3999 (1996).Google Scholar
10. Ashcroft, N.W. and Mermin, N.D., Solid State Physics, Sounders College Publishing, London 1976, p. 759.Google Scholar