Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-19T16:30:11.986Z Has data issue: false hasContentIssue false

The Elastic Strain Energy of Coherent Ellipsoidal Precipitates in Anisotropic Crystalline Solids: Applications to the Aragonite-Calcite Transformation

Published online by Cambridge University Press:  15 February 2011

Ming Liu*
Affiliation:
Department of Geological Sciences, Brown University, Providence, RI 02912
Get access

Abstract

Eshelby's theory has been applied to the aragonite-calcite transformation in order to calculate the elastic strain energy of coherent ellipsoidal precipitates in anisotropie solids. Using a quasiNewton's Method and a finite-difference gradient, the elastic strain energy was incorporated in order to calculate the activation energy ΔG* for homogeneous nucleation under hydrostatic and non-hydrostatic conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eshelby, J.D., Proc. Roy. Soc. A241, 376 (1957); A252, 561 (1959); Progress in Solid Mechanics 2, 89 (1961).Google Scholar
2. Walpole, L.J., Proc. Roy. Soc. A300, 270 (1967).Google Scholar
3. Willis, J.R., Adams Prize Essay, University of Cambridge, 1970 (unpublished).Google Scholar
4. Kinoshita, N. and Mura, T., Phys. Status Solidi A 5, 759 (1971).Google Scholar
5. Asaro, R.J. and Barnett, D.M., J. Mech. Phys. Solids 23, 77, (1975).Google Scholar
6. Lee, J.K., Barnett, D.M., Aaronson, H.J., Metall. Trans. A 8, 963 (1977);Google Scholar
Satoh, S. and Johnson, W.C., Metall. Trans. A, 23, 2761 (1992).Google Scholar
7. Robinson, K., J. Appl. Phys. 22, 1045 (1951).Google Scholar
Gilman, J.J., J. Appl. Phys., 31, 2208 (1960).Google Scholar
8. Barnett, D.M., Lee, J.K., Aaronson, H.J., Russell, K.C., Scr. Metall. 8, 1447 (1974);Google Scholar
Russell, K.C., Scr. Metall., 3, 313 (1969).Google Scholar
9. Shibata, M., and Ono, K., Actametall. 23, 587 (1975);Google Scholar
Wert, J.A., Actametall., 24, 65 (1976);Google Scholar
Hayaka-wa, M. and Oka, M., Actametall., 32, 1415 (1984);Google Scholar
LeGoues, E.K., Aaronson, H.J., Lee, Y.W., Actametall., 32, 1845 (1984).Google Scholar
10. Liu, M. and Yund, R. A., Contrib. Mineral. Petrol. 114, 465 (1993).Google Scholar
11. Carlson, W.D. and Rosenfeld, J.L., J. Geol. 89, 615 (1981).Google Scholar
12. Deer, W.A., F.R.S., , Howie, R.A., Zussman, J., An Introduction to the Rock-Forming Minerals. (Longman Group Limited, London, 1975), p. 477, pp. 497–498.Google Scholar
13. BSkinner, J., in Handbook of Physical Constants, edited by Clark, S.P. Jr. (Geo. Soc. Am. Memoir 97, New York, NY, 1966) pp. 7596;Google Scholar
Birch, F., ML, pp. 97173.Google Scholar
14. Liu, M., Yund, R.A., Tullis, J., EOS, Trans. Am. Geophys. Union 74, 162 (1993).Google Scholar
15. Holland, T.J.B. and Powell, R., J. Metamorphic. Geol. 3, 343 (1985).Google Scholar
16. Girifalco, L.A. and Good, R.J., J. Phys. Chem. 61, 904 (1957).Google Scholar
17. Brace, W.F. and Walsh, J.B., Am. Mineral. 47, 1111 (1962).Google Scholar