Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-12T11:22:54.940Z Has data issue: false hasContentIssue false

The Electric Field Gradient in Noncubic Metals and Alloys

Published online by Cambridge University Press:  15 February 2011

W. Witthuhn
Affiliation:
Physikalisches Institut der Universität Erlangen–Nürnberg, 852 Erlangen, Germany
U. De
Affiliation:
Physikalisches Institut der Universität Erlangen–Nürnberg, 852 Erlangen, Germany
W. Engel
Affiliation:
Physikalisches Institut der Universität Erlangen–Nürnberg, 852 Erlangen, Germany
S. Hoth
Affiliation:
Physikalisches Institut der Universität Erlangen–Nürnberg, 852 Erlangen, Germany
R. Keitel
Affiliation:
Physikalisches Institut der Universität Erlangen–Nürnberg, 852 Erlangen, Germany
W. Klinger
Affiliation:
Physikalisches Institut der Universität Erlangen–Nürnberg, 852 Erlangen, Germany
R. Seeböck
Affiliation:
Physikalisches Institut der Universität Erlangen–Nürnberg, 852 Erlangen, Germany
Get access

Abstract

The electric field gradient (efg) present in noncubic solids causes an energy–splitting of the nuclear levels via the quadrupole hyperfine interaction. During the last few years the perturbed angular correlation method has proved a unique experimental tool for investigating this interaction especially in metals. The basic principles of the method are discussed. Recent experimental results are given for pure metals and highly diluted systems as well as for alloys and intermetallics. The last section deals with theoretical aspects of the temperature dependence of the efg in pure metals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Raghavan, P. and Raghavan, R. S., Phys. Rev. Lett. 27, 724 (1971)CrossRefGoogle Scholar
Raghavan, R. S. and Rahhavan, P., Phys. Lett. 36A, 313 (1971).CrossRefGoogle Scholar
2. Kaufmann, E. N. and Vianden, R. J., Rev. Mod. Phys. 51, 161 (1979)Google Scholar
3. Hamilton, W. D., editor, The Electromagnetic Interaction in Nuclear Spectroscopy (North–Holland, Amsterdam 1975)Google Scholar
4. Christiansen, J. et al. , Z. Physik B24, 177 (1976)Google Scholar
5. Hempel, G. et al. , Phys. Lett. 55A, 51 (1975)Google Scholar
6. Böhm, R. et al. , Hyperfine Interactions 4, 763 (1978)CrossRefGoogle Scholar
7. Keitel, R. et al. , Proc. Intern. Conf. on Hyperfine Interactions, Berlin 1980, to be published in Hyperfine InteractionsGoogle Scholar
8. Seeböck, R., Diplomarbeit, Erlangen and to be publishedGoogle Scholar
9. De, U. et al. , see Ref. 7Google Scholar
10. Hoth, S. et al. , see Ref. 7Google Scholar
11. Heubes, P. et al. , Hyperfine Interactions 7, 93 (1979)Google Scholar
12. Weidinger, A. et al. , Phys. Lett. 65A, 247 (1978)Google Scholar
13. Raghavan, R. S. et al. , Phys. Rev. Lett. 34, 1280 (1975)Google Scholar
14. Engel, W., Thesis, Erlangen (1979)Google Scholar
Engel, W. et al. , see Ref. 7Google Scholar
15. Hewitt, R. R. and Taylor, T. T., Phys. Rev. 125, 524 (1962)Google Scholar