Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-05T18:19:39.945Z Has data issue: false hasContentIssue false

Electric Force Microscopy Of Individually Charged Silicon Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Thierry Melin
Affiliation:
Institut d'Electronique de Microélectronique et de Nanotechnologie, IEMN-CNRS UMR 8520, Avenue Poincaré, BP 69, F-59652 Villeneuve d'Ascq Cedex, France
Heinrich Diesinger
Affiliation:
Institut d'Electronique de Microélectronique et de Nanotechnologie, IEMN-CNRS UMR 8520, Avenue Poincaré, BP 69, F-59652 Villeneuve d'Ascq Cedex, France
Sophie Barbet
Affiliation:
Institut d'Electronique de Microélectronique et de Nanotechnologie, IEMN-CNRS UMR 8520, Avenue Poincaré, BP 69, F-59652 Villeneuve d'Ascq Cedex, France
Dominique Deresmes
Affiliation:
Institut d'Electronique de Microélectronique et de Nanotechnologie, IEMN-CNRS UMR 8520, Avenue Poincaré, BP 69, F-59652 Villeneuve d'Ascq Cedex, France
Thierry Baron
Affiliation:
Laboratoire des Technologies de la Microélectronique, LTM-CNRS, Leti, CEA-Grenoble, 17 rue des Martyrs, F-38054 Grenoble Cedex, France
Didier Stievenard
Affiliation:
Institut d'Electronique de Microélectronique et de Nanotechnologie, IEMN-CNRS UMR 8520, Avenue Poincaré, BP 69, F-59652 Villeneuve d'Ascq Cedex, France
Get access

Abstract

We report on charge injection experiments performed on single silicon nanoparticles and their analysis by Electric Force Microscopy (EFM). An analytical model is presented, enabling a quantitative determination of the charge state of the semiconductor nanoparticles from EFM signals, for arbitrary tip and nanoparticle shapes.

Experimentally, we provide an analysis of the capacitive and charge interactions taking place in EFM of silicon nanoparticles deposited on conductive substrates. We demonstrate that the weak image interactions associated with charged nanoparticles -of dipole-dipole type- can be identified from a spectroscopic EFM analysis.

Finally, we address the issue of the charge injection mechanisms. From the hysteretic behaviour of the charge injection spectroscopy, we separate volume versus surface charge effects. We show that charges are mostly injected in the nanoparticle volume, with however some residual injection on the nanoparticle surface. Mechanisms of the charge saturation are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tiwari, S., Ranah, F., Hanafi, H., Hartstein, A., Crabbe, E.F., and Chan, K., Appl. Phys. Lett. 68 1377 (1996).Google Scholar
[2] Schaadt, D.M., Yu, E. T., Sankar, S. and Berkowitz, A. E., Appl. Phys. Lett. 74 472 (1999).Google Scholar
[3] Boer, E. et al. Appl. Phys. Lett. 78 3133 (2001).Google Scholar
[4] Mélin, T., Deresmes, D. and Stiévenard, D., Appl. Phys. Lett., 81 5054 (2002).Google Scholar
[5] Krauss, Todd D. and Brus, Louis E., Phys. Rev. Lett. 83 4840 (1999).Google Scholar
[6] Legrand, B. et al., J. Appl. Phys., 91 106 (2002).Google Scholar
[7] Mazen, F., Baron, T., Papon, A. M., Truche, R., Hartmann, J. M., Applied Surface Science 214 359363 (2003).Google Scholar
[8] Mélin, T. et al. Phys. Rev. B 69, 035321 (2004).Google Scholar
[9] Diesinger, H. et al. Appl. Phys. Lett (2004).Google Scholar
[10] Mélin, T. et al., Phys. Rev. Lett. 92, 166101 (2004).Google Scholar