Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-13T05:14:56.033Z Has data issue: false hasContentIssue false

Electrical Characteristics and Temperature Effects of Electroluminescing Silicon Nanocrystals

Published online by Cambridge University Press:  15 February 2011

E. W Forsythe
Affiliation:
Stevens Institute of Technology; Physics and Eng. Physics Dept., Hoboken NJ, 07030
E. A. Whittaker
Affiliation:
Stevens Institute of Technology; Physics and Eng. Physics Dept., Hoboken NJ, 07030
D. Morton
Affiliation:
Army Research Laboratories, Ft. Monmouth, NJ 07703
B. A. Khan
Affiliation:
Philips Electronics North American, Inc., Briarcliff Manor, NY, 10510
B. S. Sywe
Affiliation:
The Rutgers University, Piscataway, NJ, 08855-0909
Y. Lu
Affiliation:
The Rutgers University, Piscataway, NJ, 08855-0909
S. Liangt
Affiliation:
The Rutgers University, Piscataway, NJ, 08855-0909
C. Gorla
Affiliation:
The Rutgers University, Piscataway, NJ, 08855-0909
G. S. Tompart
Affiliation:
Structured Materials Industries, Inc; Piscataway, NJ, 08854
Get access

Abstract

The white electroluminescence (EL) demonstrated from Si nanocrystals in a wider bandgap amorphous oxide matrix based structure has exciting opportunities in electroptic applications as well as novel LEDs. In this report, we review the electroluminescent properties of the devices for rapid thermally annealed samples at anneal temperatures ranging from 875°C to 1025°C. Depending upon the anneal conditions the EL spectra has shown two distinct spectral features; a strong emission peak at 380nm with a width of 50nm, and a broader features centered above 800nm,. Further, the I-V characteristics and corresponding EL spectra have been measured for sample temperatures ranging from 317K to 240K. In addition, Raman scattering estimated the mean particle sizes of the Si nanocrystals of 6.5nm and 8nm as well as provide insight to the nature of the amorphous matrix. The novel light emission from our devices demonstrates an exciting opportunity for Si nanocrystal (and nanocrystals in general) technology in a wide variety of applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Robbins, D. J., DiMaria, D. J., Falcony, C., and Dong, D. W., J. Appl. Phys., 54, 4553 (1983).Google Scholar
2. DiMaria, D. J., Kirtley, J. R., Pakulis, E. J., Dong, D. W., Kuan, T. S., Pesavento, F. L., Theis, T. N., and Cutro, , J. Appl. Phys., 56, no. 2, pg. 401, (1984).Google Scholar
3. Canham, L. H., Appl. Phys. Lett., 57, 1046 (1990).Google Scholar
4. Kim, S. I., Hart, T. R., Khan, B. K., Tompa, G. S., Lu, Y., Sun, G., and Khurgin, J., Mat. Res. Soc. Symp. Proc., 326, pg. 591, (1994).Google Scholar
5. Halimasoui, A., Oules, C., Bomchil, B., Bsiesy, A., Gaspard, F., Hermio, R., Ligeon, M., and Muller, F., Appl. Phys. Lett., 59, 304 (1991).Google Scholar
6. Tompa, G. S., Morton, D. C., Sywe, B. S., Lu, Y., Forsythe, E. W., Ott, J. A., Smith, D., Khurgin, J., and Khan, B. A., Mat. Res. Soc. Symp. Proc., 358, 701 (1995).Google Scholar
7. Apetz, Vescan, L., Hartmann, A., Dieker, C., and Luth, H., Appl. Phys. Lett., 66, 445 (1995).Google Scholar
8. Shcheglov, K. V., Yang, C. M., Vahala, K. J., and Atwater, H. A., Appl. Phys. Lett., 66, 745, (1995).Google Scholar
9. Takagahara, T. and Takeda, K., Phys. Rev. B, 46, 15578 (1992).Google Scholar
10. Khurgi, J., Forsythe, E.W., Kim, S. I., Sywe, B. S., Khan, B. A., and Tompa, G. S., Mat. Res. Soc. Symp. Proc., 358, 193 (1995).Google Scholar
11. Brus, L., J. Phys Chem., 98, 3575 (1994)Google Scholar
12. Prokes, S. M., Glembocki, O. J., Bermudez, V. M., Kaplan, R., Friedersdorf, L. E., and Searson, P. C., Phys. Rev. B, 45, 13788 (1992).Google Scholar
13. Wolford, D. J., Scott, B. A., Reimer, J. A., and Bradley, J. A., Physica B, 117&118, pg. 920, (1983).Google Scholar
14. Brandt, M. S., Fuchs, H. D., Stutzmann, M., Weber, J., and Cardona, M., Sol. State Comm., 81, pg. 302, (1992).Google Scholar
15. Tamura, H., Ruckschloss, M., Wirschem, T., and Veprek, S., Appl. Phys. Lett., 65, 1537 (1994).Google Scholar
16. Prokes, S. M., SPIE, 2141, 146.Google Scholar
17. Dorfmnan, B., Abraizov, M., Pollak, F. H., Yan, D., Strongin, M., Yang, X.-Q., Rong, Z.-Y., Mat. Res. Soc. Symp. Proc., 349, 547 (1994).Google Scholar
18. Fauchet, P., Light Scattering in Semiconductor Structures and Superlattices, Edit by Lockwood, D. J. and Young, J. F., Plenum Press, New York, 1991.Google Scholar
19. Forsythe, E. W., Whittaker, E. W., Pollak, F. H., Sywe, B. S., Tompa, G. S., Khan, B. K., Khurgin, J., and Lee, H. W. H., Mat. Res. Soc. Symp., 358, 187 (1994).Google Scholar
20. Bruesch, P., Stockmeier, Th., and Stucki, F., J. Appl. Phys., 73, 7678 (1993).Google Scholar
21. Ni, J. and Arnold, E., Appl. Phys. Lett., 39, 554 (1981).Google Scholar
22. Tarug, M. L., J. Appl. Phys., 49, 4069 (1978).Google Scholar
23. Mafredotti, C., Fizzotti, F., Amato, G., Phys. Stat. Sol. A, 108, K25 (1988).Google Scholar