Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-03T18:19:31.012Z Has data issue: false hasContentIssue false

Electrical Characterization of Nanostructured Carbon Films Produced by Supersonic Cluster Beam Deposition

Published online by Cambridge University Press:  17 March 2011

Paolo Piseri
Affiliation:
INFM -Università degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy
Emanuele Barborini
Affiliation:
INFM -Università degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy
Mara Bruzzi
Affiliation:
INFM -Università di Firenze, Dipartimento di Energetica, Via S. Marta 3, 50139 Firenze, Italy
Stefania Miglio
Affiliation:
INFM -Università di Firenze, Dipartimento di Energetica, Via S. Marta 3, 50139 Firenze, Italy
Gero Bongiorno
Affiliation:
INFM -Università degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy
Paolo Milani
Affiliation:
INFM -Università degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy
Get access

Abstract

Electrical conduction in nanostructured carbon (ns-C) films produced by deposition of a supersonic beam of neutral carbon clusters has been studied. The d.c. conduction properties of these films have been measured in-situ during the deposition process and ex-situ as a function of the temperature in vacuum and in ambient of different gases (H2, N2, CH4, He). The ns-C films exhibit an ohmic behavior with a room temperature resistivity in the range 10MΩcm-1GΩcm depending on the growth and storage conditions. Conductivity vs. temperature measured in vacuum in the range 300-400K is characterized by activation energies in the range 0.3-0.7eV, the current response does not differ significantly in gas atmosphere.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mott, N.F. and Davis, E.A., Electronic processes in non-crystalline materials, Clarendon Press, Oxford, 1979 Google Scholar
2. Shimakawa, K., and Miyake, K., Phys. Rev. B 39, 7578 (1989).Google Scholar
3. Godet, C., Phyl. Mag. B 81, 205 (2001)Google Scholar
4. Robertson, J., Adv. Phys. 35, 317 (1986).Google Scholar
5. Robertson, J., Phyl. Mag. 66, 199 (1992)Google Scholar
6. Paillard, V., Meaudre, M., Melinon, P., Dupuis, V., Perez, J.P., Vignoli, S., Perez, A., Meaudre, R., J. Non-Cryst. Solids 191, 174 (1995)Google Scholar
7. Barborini, E., Piseri, P., A. Li Bassi, Ferrari, A. C., Bottani, C., Milani, P., Chem. Phys. Lett. 300, 633 (1999).Google Scholar
8. Barborini, E., Piseri, P., Milani, P., J. Phys. D 32, L105 (1999).Google Scholar
9. Bruzzi, M., Piseri, P., Barborini, E., Benedek, G., Milani, P., Diam. Relat. Mat. 10, 989 (2001).Google Scholar
10. Besold, J., Thielsch, R., Matz, N., Frenzel, C., Born, R., Möbius, A., Thin Solid Films 293, 96 (1997).Google Scholar
11. Milani, P., Ferretti, M., Piseri, P., Bottani, C.E., Ferrari, A., Bassi, A Li, Guizzetti, G., Patrini, M. J. Appl. Phys. 82, 5793 (1997).Google Scholar