Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-26T17:44:18.873Z Has data issue: false hasContentIssue false

Electrical Defect Analysis Following Pulsed Laserirradiation of Unimplanted GaAs

Published online by Cambridge University Press:  15 February 2011

D. Pribat
Affiliation:
Thomson-CSF/LCR, Domaine de Corbeville, 91401 Orsay, France.
S. Delage
Affiliation:
Thomson-CSF/LCR, Domaine de Corbeville, 91401 Orsay, France.
D. Dieumegard
Affiliation:
Thomson-CSF/LCR, Domaine de Corbeville, 91401 Orsay, France.
M. Croset
Affiliation:
Thomson-CSF/LCR, Domaine de Corbeville, 91401 Orsay, France.
P.C. Srivastava
Affiliation:
Groupe de Physique des Solides de I'E.N.S. Université Paris VII, Tour 23, 2 Place Jussieu, 75221 Paris, France.
J.C. Bourgoin
Affiliation:
Groupe de Physique des Solides de I'E.N.S. Université Paris VII, Tour 23, 2 Place Jussieu, 75221 Paris, France.
Get access

Abstract

Current-voltage, capacitance-voltage and defect spectroscopy techniques are used to characterize the electrical properties of GaAs crystals after pulsed laser irradiation with either a Nd-YAG or a Ruby laser. I(V) and C(V) measurements performed in conjunction on Au/GaAs Schottky structures after laser irradiation at low energy density show an important barrier lowering, of the order of 300mV. Carrier compensation up to 6×lO16/cm3 is observed in a subsurface layer whose thickness increases with deposited laser energy density. D.L.T.S. is used to study the tail of laser induced defects behind the heavily compensated layer. Finally the results are compared to those obtained following conventional thermal treatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work partially supported by D.R.E.T.

References

REFERENCES

1.Fletcher, J., Narayan, J., Lowndes, D.H. in : Defects in Semiconductors, ed. by Narayan, J. and Tan, T.Y. (Elsevier, North Holland, 1981) p. 421.Google Scholar
2.Nojima, S., J. Appl. Phys. 53, 5028 (1982).Google Scholar
3.Mooney, P.M., Bourgoin, J.C., Icole, J. in : Laser and Electron Beam Solid Interactions and Materials Processing, ed. by Gibbons, J.F., Hess, L.D. and Sigmon, T.W. (Elsevier North Holland 1981) p. 255.Google Scholar
4.Emerson, N.C., Sealy, B.J., Electron. Lett. 16, 512 (1980).Google Scholar
5.Davies, D.E., Lorenzo, J.P., Kennedy, E.F., Ryan, T.G. in : Proceedings of the 1981 International Symposium on GaAs and Related Compounds (Oiso, Japan) p. 255.Google Scholar
6.Takai, M., Ono, S., Ootsuka, Y., Gamo, K., Namba, S. in : Proceedings of the 4thInternational Conference on Ion Implantation Equipment and Techniques Berchtesgaden September 1982 (to be published).Google Scholar
7.Yuba, Y., Gamo, K., Murakami, K., Namba, S., Appl. Phys. Lett. 35, 156 (1979).Google Scholar
8.Yuba, Y., Gamo, K., Namba, S., Ref (5) p. 221.Google Scholar
9.Pribat, D., Delage, S., unpublished data.Google Scholar
10.Pribat, D. in : Cohesive Properties of Semiconductors Under Laser Irradiation, ed. by Laude, L.D. (Martinus Nijhoff Publishers, The Hague, in press).Google Scholar
11.Tsu, R., Baglin, J.E., Lasher, G.J., Tsang, J.C., Appl. Phys. Lett. 34, 153 (1979).Google Scholar
12.Wood, R.F., Lowndes, D.H., Christie, W.H. in Ref. 131 , p. 231.Google Scholar
13.Pons, D., Makram-Ebeid, S., J. Physique 40, 1161 (1979).Google Scholar
14.Chiang, S.Y., Pearson, G.L., J. Appl. Phys. 46, 2986 (1975).Google Scholar