Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-08T05:22:40.232Z Has data issue: false hasContentIssue false

Electrical Properties of Oxygen Doped GaN Grown by Metalorganic Vapor Phase Epitaxy

Published online by Cambridge University Press:  03 September 2012

R.Y. Korotkov
Affiliation:
Materials Research Center and Department of Materials Science and Engineering Northwestern University, Evanston, IL 60208
B.W. Wessels
Affiliation:
Materials Research Center and Department of Materials Science and Engineering Northwestern University, Evanston, IL 60208
Get access

Abstract

Deliberate oxygen doping of GaN grown by MOVPE has been studied. The electron concentration increased as the square root of the oxygen partial pressure. Oxygen is a shallow donor with a thermal ionization energy of 27 ±2 meV. A compensation ratio of Θ = 0.3-0.4 was determined from Hall effect measurements. The formation energy of ON of EF = 1.3 eV, determined from the experimental data, is lower than the theoretically predicted value.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Walle, C. G. van de, Stampfl, C. and Neugebauer, J., J. Cryst. Growth 189, 505 (1998).Google Scholar
2. Forte-Poisson, M. A. di, Huet, F., Romann, A., Tordjman, M. et al. J. Cryst. Growth 195, 314 (1998).Google Scholar
3. Ploog, K. H. and Brandt, O., J. Vac. Sci. Technol. A 16, 1609 (1998).Google Scholar
4. Chung, B-C. and Gershenzon, M., J. Appl. Phys. 72, 651 (1992).Google Scholar
5. Niebuhr, R., Bachem, K. H., Kaufmann, U., Maier, M., Merz, C. et al. J. of Electr. Mat. 26, 1127 (1997).Google Scholar
6. Gotz, W., Kern, R. S., Chen, C. H., Liu, H., Steigerwald, D. A. et al. , Mat. Sci. and Eng B 59, 211 (1999).Google Scholar
7. Joshkin, V. A., Parker, C. A., Bedair, S. M., Muth, J. F., Shmagin, I. K. et al. , J. Appl. Phys. 86, 281 (1999).Google Scholar
8. Chen, W. M., Buyanova, I. A., Wagner, Mt., Monemar, B. et al. , Phys. Rev. B 58, R13351 (1998).Google Scholar
9. Look, D. C., Electrical Characterization of GaAs Materials and Devices (Wiley, New York, 1989).Google Scholar
10. Orton, J. W. and Foxon, C. T., Semicond. Sci. Technol. 13, 310 (1998).Google Scholar
11. Nakamura, S., Mukai, T. and Senoh, M., J. J Appl. Phys. A 31, 2883 (1992).Google Scholar
12. Look, D. C., Sizelove, J. R., Keller, S., Wu, Y. F., Mishra, U. K. et al. . Solid State Comm. 102, 297 (1997).Google Scholar
13. Look, D. C., Molnar, R. J., Appl. Phys. Lett. 70, 3377 (1997).Google Scholar
14. McCluskey, M. D., Johnson, N. M. et al. , Phys. Rev. Lett. 80, 4008 (1997)Google Scholar
15. Smith, R. A., Semiconductors (Cambridge, 1959)Google Scholar
16. Yi, G-C and Wessels, B. W., Appl. Phys. Lett 69, 3028 (1996)Google Scholar
17. Neugebauer, J. and Walle, C. G. Van de, FESTKOR A S 35: 2543 (1996)Google Scholar
18. Ilegems, M. and Montgomery, H. C., J. Phys. Chem. Solids 34, 885 (1973)Google Scholar
19. Mott, N. F. and Twose, W. D., Adv. Phys. 10, 107 (1961)Google Scholar
20. To better fit the high temperature side of the mobility curve we used D. C. Look approach12. A near perfect fit to experimental data can be achieved when the acoustic deformation potential E1 = 17 (9.2) eV of and e0(e∝−1- e−1) = 0.104 (0.0867) are used with literature values given in brackets.Google Scholar
21. Korotkov, R. Y. and Wessels, B. W. (unpublished).Google Scholar