Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-10-04T10:29:01.905Z Has data issue: false hasContentIssue false

Electrical Properties of ZnO-Bi2O3 Metal Oxide Heterojunction — A Clue of a Role of Intergranular Layers in ZnO Varistors

Published online by Cambridge University Press:  15 February 2011

Kazuo Eda*
Affiliation:
Wireless Research Laboratory, Matsushita Electric Industrial Co., Ltd., Kadoma Osaka 571, Japan
Get access

Abstract

Zinc Oxide (ZnO) Ceramics-Bismuth Oxide (Bi2O3) Metal Oxide thin film heterojunction made by sputtering technique showed a highly non-Ohmic property. The voltage-current characteristics and the dielectric properties showed dependence on Bi2O3 metal oxide thin film thickness.

In this paper after reviewing and discussing the electrical properties of ZnO varistors, the role of intergranular layers in the ZnO varistor is discussed based on experimental results with the heterojunction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matsuoka, M., Japan. J. Appl. Phys. 10, 736 (1971).CrossRefGoogle Scholar
2. Morris, W. G., J. Am. Ceram. Soc. 56, 360 (1973).CrossRefGoogle Scholar
3. Wong, J., J. Appl. Phys. 46, 1653 (1975).CrossRefGoogle Scholar
4. Inada, M., Japan. J. Appl. Phys. 17, 673 (1978).CrossRefGoogle Scholar
5. Santhanam, A. T., Gupta, T. K., and Carlson, W. G., J. Appl. Phys. 50 (1979).CrossRefGoogle Scholar
6. Kingery, W. D., Vander Sande, J. B. and Mitamura, T., J. Am. Ceram. Soc. 62, 221 (1979).CrossRefGoogle Scholar
7. Clarke, D. R., J. Appl. Phys. 50, 6829 (1979).CrossRefGoogle Scholar
8. Levinson, L. M. and Philipp, H. R., 46, 1332 (1975).Google Scholar
9. Matsuoka, M., Masuyama, T. and Iida, Y., Japan. J. Appl. Phys. 8, 1275 (1969).CrossRefGoogle Scholar
10. Mukae, K., Tsuda, K. and Nagasawa, I., Japan. J. Appl. Phys. 16, 1361 (1977).CrossRefGoogle Scholar
11. Eda, K., J. Appl. Phys. 49, 2964 (1978).CrossRefGoogle Scholar
12. Eda, K., Iga, A. and Matsuoka, M., Japan. Soc. Powder and Powder Metallurgy Spring Meeting (1980).Google Scholar
13. Miyoshi, T., Maeda, K., Takahashi, K., and Yamazaki, T., Am. Ceram. Soc. Annual Meeting (1980).Google Scholar
14. Wong, J., J. Appl. Phys. 51, 4453 (1980).CrossRefGoogle Scholar
15. Iga, A., Matsuoka, M. and Masuyama, T., Japan. J. Appl. Phys. 15, 1161 (1976).CrossRefGoogle Scholar
16. Inada, M., Japan. J. Appl. Phys. 18, 1439 (1979).CrossRefGoogle Scholar
17. Iga, A., Matsuoka, M. and Masuyama, T., Japan. J. Appl. Phys. 15 (1876).Google Scholar
18. Levinson, L. M. and Philipp, H. R., J. Appl. Phys. 47, 1117 (1976).CrossRefGoogle Scholar
19. Levinson, L. M. and Philipp, H. R., J. Appl, Phys. 49, 6142 (1978).CrossRefGoogle Scholar
20. Einzinger, R., Ber. Dtsch. Keram Ges., 52, 244 (1975).Google Scholar
21. Eda, K., Iga, A. and Matsuoka, M., J. Appl. Phys. 51, 2678 (1980).CrossRefGoogle Scholar
22. Lou, L. F., J. Appl. Phys. 50, 556 (1979).Google Scholar
23. Matsuura, M. and Yamaoki, H., Japan. J. Appl. Phys. 16, 1261 (1977).CrossRefGoogle Scholar