Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T09:31:17.303Z Has data issue: false hasContentIssue false

Electrically Conducting Polymer Blends Based On Polyaniline

Published online by Cambridge University Press:  10 February 2011

P. Passiniemi
Affiliation:
Neste Oy, Chemicals, PO Box 310, FIN-06101 Porvoo, Finland
J. Laakso
Affiliation:
Neste Oy, Chemicals, PO Box 310, FIN-06101 Porvoo, Finland
H. Ruohonen
Affiliation:
Neste Oy, Chemicals, PO Box 310, FIN-06101 Porvoo, Finland
Kimmo Väkiparta
Affiliation:
Neste Oy, Chemicals, PO Box 310, FIN-06101 Porvoo, Finland
Get access

Abstract

Polyaniline offers a promissing possibility to make electrically conducting polymer blends with tailorable surface and bulk conductivities. The matrix polymer can be a thermoplast or a thermo- set. Different commonly used polymer processing methods are applicable to the blends; e.g. injection moulding, film blowing, compression moulding and fiber spinning. Also commonly used thermoset resins processings are possible. The key feature in making all this feasible is the co- solvent/plasticizer technology developed recently in the industry. Typically, the antistatic conduc- tivity level is reached in melt-processing with a polyaniline complex amount of 5 to 10 wt-% and in solution processing with 0.5 to 5 wt-% complex amounts. The maximum conductivity is in the range of 10 to 100 mS/cm for blends.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Doriomedoff, M., Hautiere-Cristofini, F., De Surville, R., Jozefowicz, M.. Yu, L.–T. and Buvet, R., J. Chim. Phys. Physicochim. Biol. 68, p. 1055 (1971).Google Scholar
2. a) Heeger, A.J. in Science and Application of Conducting Polymers, edited by W.R., Salaneck, D.T., Clark and E.J., Samuelsen, Adam Hilger, Bristol, 1991, pp. 112; b) A.G.MacDiarmid and A.J.Epstein, Mater. Res. Soc. Symp. Proc. 328, p. 133 (1994).Google Scholar
3. a) Wessling, B., Adv. Mater. 6, p. 226 (1994); b) O.T.Ikkala, J.Laakso, K.Vakiparta, E.Virtanen, H.Ruohonen, H.Jarvinen, T.Taka, P.Passiniemi, J.-E.Osterholm, Y.Cao, A.Andreat- ta, P.Smith and A.J.Heeger, Synth. Met. 69, p. 97 (1995).Google Scholar
4. US Patents 5,069,820 and 5,160,457.Google Scholar
5. Ikkala, O. et al., accepted for publication in J. Chem. Phys.Google Scholar
6. a) Shacklette, L.W. and Han, C.C., Mater. Res. Soc. Symp. Proc. 328, p. 157 (1994); b) Y.Cao, J.Qiu and P.Smith, Synth. Met. 69, p. 187 (1995).Google Scholar
7. T. Vikki et al., submitted for publication.Google Scholar
8. a) Wessling, B., Adv. Mater. 5, p. 300 (1993); b) B.Wessling, R.Hiesgen and D.Meissner, Acta Polym. 44, p. 132 (1993).Google Scholar
9. US Patent 5,340,499.Google Scholar
10. US Patent Applications 07/800,555 and 07/830,414.Google Scholar
11. Cao, Y., Andreatta, A., Heeger, A.J. and Smith, P., Polymer 30, p. 2305 (1989).Google Scholar
12. Yang, C., Cao, Y., Smith, P. and Heeger, A., Synth. Met. 53, 293 (1993).Google Scholar
13. Levon, K, Margolina, A. and Patashinsky, A.Z., Macromol. 26, p. 4061 (1993).Google Scholar
14. Peltola, J, Cao, Y. and Smith, P., Adhesives Age, May (1995).Google Scholar
15. Österholm, H., private communication.Google Scholar