Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-10T12:30:17.405Z Has data issue: false hasContentIssue false

Electrochemically Prepared Polymeric Precursors for the Formation of Non-Oxide Ceramics and Coatings

Published online by Cambridge University Press:  25 February 2011

Ralph Zahneisen
Affiliation:
Institut für Werkstoffwissenschaften III (Glas und Keramik), Universität Erlangen-Nürnberg, Martensstr. 5, 8520 Erlangen, Germany
Christian Rüssel
Affiliation:
Institut für Werkstoffwissenschaften III (Glas und Keramik), Universität Erlangen-Nürnberg, Martensstr. 5, 8520 Erlangen, Germany
Get access

Abstract

The electrochemical preparation of polymeric precursors and the subsequent formation of non-oxide powders, ceramics and coatings is described. The metals were anodically dissolved in an electrolyte consisting of a primary organic amine, acetonitrile as a solvent, and a tetraalkylammonium salt. This procedure led to the formation of polymeric precursor solutions. Removal of the excess organic compounds resulted in the formation of polymeric amorphous solids. Pyrolysis was carried out at temperatures in the range of 750 to 1100°C. In an atmosphere of ammonia, metal nitrides were formed, while calcination under nitrogen or argon led to carbonitrides or to carbides, depending on temperature and the metal used. Up to now, this route has been applied to Al, Ti, Zr, Cr, Ta, Mg, Ca and Y, and it is suppossed, that this route is applicable to the formation of many metal carbides and nearly all metal nitrides relevant for materials science.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Seyferth, D. and Wiseman, G. H., J Am Ceram. Soc. 64, C132 (1984).Google Scholar
2. Yajima, S., Hajashi, J. and Omori, M., Chem Lett. 931 (1975).CrossRefGoogle Scholar
3. Wynne, K. J. and Rice, R. W., Ann. Rev. Mater. Sci. 14, 297 (1984).CrossRefGoogle Scholar
4. Pouskopeli, G., Cerram. Int. 15, 213 (1989).CrossRefGoogle Scholar
5. Czekaj, C. L., Hackney, M. L. J., Hurley, W. J., Interrante, L. V., Sigei, G. A., Schieids, P. J. and Slack, G. A., in Better Ceramics Through Chemistry 111, edited by. Brinker, C. J., Clark, D. F., and Ulrich, D. R. (Mat. Res. Soc. Proc. 121 Pittsburgh, PA 1988) pp. 465.Google Scholar
6. Rüssel, C. and Seibold, M., U. S. Patent No. 07/316. 914 (4 February 1989).Google Scholar
7. Seibold, M. and Rüssel, C., J. Am. Ceram. Soc. 72, 1503 (1989).CrossRefGoogle Scholar
8. Seibold, M. and Rüssel, C. in Better Ceramics Through Chemistry III, edited by Brinker, C. J., Clark, D. F., and Ulrich, D. R. (Mat. Res. Soc. Proc. 121 Pittsburgh, PA 1988) pp. 477482.Google Scholar
9. Distler, P. and Rüssel, C., J. Mater. Sci. 27, 133 (1992).CrossRefGoogle Scholar
10. Seibold, M., Vierneusel, U. and Rüssel, C., in Ceramic Powder Processing Science, edited by Hausner, H., Messing, G. C. and Hirano, S. (Deutsche Keramische Gesellschaft, Köln 1989) pp. 173179.Google Scholar
11. Teusel, I. and Rüssel, C., J. Mater. Sci. 25, 3531 (1990).CrossRefGoogle Scholar
12. Jaschek, R. and Rüssel, C., Surf. Coat. Technol. 45, 99 (1991).CrossRefGoogle Scholar
13. Jaschek, R. and Rüssel, C., Thin Solid Films 208, 7 (1992).CrossRefGoogle Scholar
14. Rüssel, C., Chem. Mater. 2, 241 (1990).CrossRefGoogle Scholar
15. Jaschek, R. and Rüssel, C., J. Non-cryst. Solids 135, 236 (1991).CrossRefGoogle Scholar
16. Rüssel, C., J. Mater. Sci. Lett, in press.Google Scholar