Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-16T12:43:27.703Z Has data issue: false hasContentIssue false

Electron Beam Enhanced Precipitation in Highly Carbon Doped GaAs Layers

Published online by Cambridge University Press:  03 September 2012

P. Werner
Affiliation:
MPI für Mikrostrukturphysik, Weinberg 2, D-06120 Halle / Saale, Germany
U. Gösele
Affiliation:
MPI für Mikrostrukturphysik, Weinberg 2, D-06120 Halle / Saale, Germany
H. Kohda
Affiliation:
NTT, LSI Laboratories Atsugi-shi, 243-01, Japan
Get access

Abstract

Highly carbon doped GaAs layers grown by metal organic vapor phase epitaxy (MOVPE) have been investigated by transmission electron microscopy (TEM). Electron irradiation has been applied to generate point defects interacting with native defects, e.g., substitutional carbon. This irradiation induces periodically arranged striations perpendicular to the growth direction, which were observed in situ by TEM. Furthermore, precipitates (Ø= 10–15nm) were formed containing non-crystalline material, which most likely is gallium. To explain these phenomena a precipitation mechanism is proposed. It involves small fluctuations of the incorporated C as well as the interaction of irradiation induced point defects, mainly As and C interstitials and As vacancies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Konagai, M., Yamada, T., Akatsuka, T., Saito, K., Tukumitsu, E. and Takahashi, K., J. Cryst. Growth 98, 67 (1989).Google Scholar
[2] MacKenzie, J.D., Abernathy, C.R., Pearton, S.J. and Chu, S.N.G., Appl.Phys.Lett. 66, 1397 (1995).Google Scholar
[3] Neumann, G., Lauterbach, Th., Maier, M., and Bachmann, K.H., Inst.Phys.Conf.Ser. No. 112, 167 (1990).Google Scholar
[4] Hardtdegen, H., Ungermann, Chr., Wirtz, K., Guggi, D., Herion, J., Siekmann, H., and Lüth, H., J. Cryst.Growth 145, 440 (1994).Google Scholar
[5] Driad, R., et al., Inst. Phys. Conf. Ser. No. 141, 265 (1995).Google Scholar
[6] Jones, R. and Öberg, S., Semicond. Sci. 7, 855 (1992).Google Scholar
[7] Sohn, H., Weber, E.R., Nozaki, S., Konagai, M., and Takahashi, K., Mat.Res.Soc.Symp.Proc. 262, 129 (1992).Google Scholar
[8] Moll, A.J., Hailer, E.E., Ager, J.W., and Walukiewicz, W., Appl.Phys.Lett. 65, 1145 (1994).Google Scholar
[9] Newman, R.C., in: Semiconductors and Semimetals, Ed. Weber, E.R., Vol.38, p. 117, Academic Press 1993 Google Scholar
[10] Kohda, H., Wada, K., J. Crystal Growth 167, 557(1996)Google Scholar
[11] Gledhill, G.A., Upadhyay, S.B., Sangster, M.J.L., and Newman, R.C., J. Molecular Spectr. 247, 313 (1991).Google Scholar
[12] Föll, H., Gösele, U., and Kohlbesen, O.B., J.Cryst.Growth 40, 90 (1977).Google Scholar
[13] Marioton, B.P.R., and Gösele, U., J.Appl.Phys. 63, 4661 (1988).Google Scholar