Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-20T22:27:06.348Z Has data issue: false hasContentIssue false

Electron Injection Effects in Electroluminescent Devices Using Polymer Blend Thin Films

Published online by Cambridge University Press:  10 February 2011

C. C. Wu
Affiliation:
Advanced Technology Center for Photonic and Optoelectronic Materials (ATC/POEM) Princeton University, NJ 08544
J. C. Sturm
Affiliation:
Advanced Technology Center for Photonic and Optoelectronic Materials (ATC/POEM) Princeton University, NJ 08544
R. A. Register
Affiliation:
Advanced Technology Center for Photonic and Optoelectronic Materials (ATC/POEM) Princeton University, NJ 08544
L. Suponeva
Affiliation:
Department of Chemistry, University of Southern California, Los Angeles, CA 90089
M. E. Thompson
Affiliation:
Department of Chemistry, University of Southern California, Los Angeles, CA 90089
Get access

Abstract

In this paper, we discuss the effects of electron injection on electroluminescence (EL) efficiency in single-layer EL devices using blends of poly(N-vinylcarbazole) (PVK) and poly(3-nbutyl- p-pyridyl vinylene) (Bu-PPyV). Pure Bu-PPyV thin films suffer from formation of excimers due to the strong interchain interaction. Diluting Bu-PPyV with the high-energy-gap and holetransporting polymer PVK suppresses excimer formation and substantially raises both photoluminescence (PL) and EL efficiencies. The emission color is converted from red to green, indicating a transition from excimer emission to monomer emission of Bu-PPyV. The electron injection and EL efficiency can be fluther improved by adding small-molecule oxadiazoles into the blends as electron-transport materials. In optimized devices, an external EL quantum efficiency (backside emission only) as high as 0.8% photon/electron and practical brightnesses of 100 cd/m2 and 1000 cd/m2 can be achieved at ∼9V and ∼13.5V, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jenekhe, S.A. and Osaheni, J.A., Science 265, 765 (1994)Google Scholar
2. Braun, D., Heeger, A. J., Appl. Phys. Lett. 58, 1982 (1991)Google Scholar
3. Brown, A.R., Bradley, D.D.C., Burn, P.L., Burroughes, J.H., Friend, R.H., Greenham, N., Holmes, A.B., and Kraft, A., Appl. Phys. Lett. 61, 2793 (1992)Google Scholar
4. Kido, J., Kohda, M., Okuyama, Kand Nagai, K, Appl. Phys. Lett. 61 (7), 761 (1992)Google Scholar
5. Zhang, C., Hoger, S., Pakbaz, K, Wudl, F., and Heeger, A.J., J. Electron. Mater. 23, 453 (1994)Google Scholar
6. Johnson, G. E., McGrane, K.M.and Stolka, M., Pure & Appl. Chem. 67, 175 (1995)Google Scholar
7. Marsella, M.J., Swager, T.M., Polymer Preprints 33 (1), 1196 (1992)Google Scholar
8. Tian, J., Thompson, M.E., Wu, C.C., Sturm, J.C., Register, R.A., Marsella, M.J., Swager, T.M., Polymer Preprints 35 (2), 761 (1994)Google Scholar
9. Tian, J., Wu, C.C., Thompson, M.E., Sturm, J.C., Register, R.A., Adv. Mater. 7, 395 (1995)Google Scholar
10. Tian, J., Wu, C.C., Thompson, M.E., Sturm, J.C., Register, R.A., Chem. Mater. 7, 2190 (1995)Google Scholar
11. Tokuhisa, R, Era, M., Tsutsui, T., and Saito, S., Appl. Phys. Lett. 66, 3433 (1995)Google Scholar
12. Anderson, M.R., Berggen, M., Inganas, O., Gustafsson, G., Gustafsson-Carlberg, J.C., Selse, D., Hjertberg, T. and Wennerstrom, O., Macromolecules 28, 7525 (1995)Google Scholar
13. Pommerehne, J., Vestweber, H, Guss, W., Mahrt, R-F., BAssler, H., Porsch, M. and Daub, J., Adv. Mater. 7, 551 (1995)Google Scholar
14. Kido, J., Shionoya, H. and Nagai, K, Appl. Phys. Lett. 66 (16), 2281 (1995)Google Scholar