Hostname: page-component-6d856f89d9-nr6nt Total loading time: 0 Render date: 2024-07-16T07:42:47.518Z Has data issue: false hasContentIssue false

Electron Microscopy and Spectroscopy of Vapor Deposited Diamond

Published online by Cambridge University Press:  28 February 2011

Mark M. Disko
Affiliation:
Exxon Research and Engineering Co., Corporate Research Laboratory, Route 22 East, Annandale, NJ 08801
T. D. Moustakas
Affiliation:
Boston Univ., College of Engineering, 44 Cummington St., Boston, MA 02215
Get access

Abstract

The microstructure of vapor - deposited diamond films was analyzed by electron diffraction and transmission electron energy - loss spectroscopy. Diffraction results show regions with large numbers of stacking faults and twins. Electron energy - loss spectroscopy has been used to measure local electronic properties which are consistent with previous measurements of natural diamond. Transmission EELS investigations of the distribution of graphitic carbon at film surfaces and within the bulk are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Robinson, A. L., Science 234, 1074 (1986).CrossRefGoogle Scholar
2. Moustakas, T. D., Dismukes, J. P., Ye, Ling, Walton, K. R. and Tiedje, T. J., Proc. of 10th Intl. Conf. on Chemical Vapor Deposition (Electrochemical Soc. Inc., 1987), p. 1164.Google Scholar
3. Matsumoto, S., Setaka, N., Sato, Y., and Kamo, M., Jap. J. Appl. Physics 21, L183 (1982).Google Scholar
4. Woods, G. S., Phil. Mag. 23, 79 (1971).CrossRefGoogle Scholar
5. Derjaguin, B. V., Spitsyn, B. V., Gorodetsky, A. E., Zakharov, A. P., Bouilov, L. L. and Aleksenko, A. E., J. Cryst. Growth 31, 44 (1975).Google Scholar
6. Glass, F. T., Williams, B. E., and Davis, R. F., in Proc. of the SPIE - Micro-Optoelectronic Materials 877, (Intl. Soc. for Optical Engineering, Los Angeles, 1988), pp. 55–53.Google Scholar
7. Batson, P. E., Kavanaugh, K. L., Woodall, J. M., and Mayer, J. W., Phys. Rev. Left. 57, 43 (1986).Google Scholar
8. Daniels, J., Festenberg, C. von, Raether, H., and Zeppenfeld, K., Springer Tracts in Modern Physics 38 (Springer, Berlin, 1970), p. 114.Google Scholar
9. Bruley, J., Brown, L. M. and Berger, S. D., Inst. Phys. Conf. Ser. 78, 561 (1985).Google Scholar
10. Egerton, R. F. and Whelan, M. J., Philos. Mag. 30, 739 (1974).CrossRefGoogle Scholar
11. Pennycook, S. J., Ultramic. 7, 99 (1981).CrossRefGoogle Scholar
12. Morar, J. F., Himpsel, F. J., Hollinger, G., Jordon, J. L., Hughes, G., and McFeely, F. R., Phys. Rev. B33, 1346 (1986).CrossRefGoogle Scholar
13. Leapman, R. D., Fiori, C. E., and Swyt, C. R., J. Microscopy, 133, 239 (1984).CrossRefGoogle Scholar
14. Disko, M. M., Ahn, C. C., Meitzner, G., and Krivanek, O. L., Microbeam Analysis 1988, edited by Newbury, D. E., (San Francisco Press, San Francisco, 1988), pp. 4749.Google Scholar