Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-21T23:27:10.236Z Has data issue: false hasContentIssue false

Electron Microscopy Study of Cubic Boron Nitride Thin Films Grown by Ion -Assisted Pulsed Laser Deposition

Published online by Cambridge University Press:  21 February 2011

D.D. Medlin
Affiliation:
Sandia National Laboratories, Livermore, California 94551 USA
T.T. Friedmann
Affiliation:
Sandia National Laboratories, Livermore, California 94551 USA
P.P. Mirkarimi
Affiliation:
Sandia National Laboratories, Livermore, California 94551 USA
K.K. Mccarty
Affiliation:
Sandia National Laboratories, Livermore, California 94551 USA
M.M. Mills
Affiliation:
Sandia National Laboratories, Livermore, California 94551 USA
Get access

Abstract

We present a microstructural study of boron nitride films grown by ion-assisted pulsed laser deposition. Fourier transform infra-red spectroscopy, electron energy loss spectroscopy, and electron diffraction measurements indicate that within the irradiated region of the substrate, the film consists of high fraction of cBN with a small amount of the turbostratic phase; outside of the irradiated region, only the turbostratic phase is detected. Conventional and high resolution electron microscopic observations of the boron nitride microstructure indicate that the cBN is in the form of twinned crystallites, up to 30 nm in diameter. We also observe particulates, formed by the laser pulse, that reduce the yield of cBN in the irradiated regions by shadowing local areas from the ion beam.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wentorf, R. H. Jr.. in New Diamond Science and Technology eds. Messier, R. et al. (MRS, Pittsburgh PA 1991) 1029.Google Scholar
2. Wills, R.R., International Journal of High Technology Ceramics, 1, 139 (1985).Google Scholar
3. Arya, S.P.S. and D'Amico, A., Thin Solid Films, 157, 267 (1988)Google Scholar
4. Pouch, J.J. and Alterovitz, S.A. (eds.) Synthesis and Properties of Boron Nitride. Materials Science Forum, Vols. 54 and 55, (Trans Tech Publications, Brookfield, NY 1990).Google Scholar
5. Kester, D.J. and Messier, R., J. Appl. Phys. 72, 504 (1992).Google Scholar
6. Ballal, A.K., Salamanca, L. Riba, Doll, G.L., Taylor, C.A., and Clarke, R.. J. Mater. Res. 7 (7), 1618 (1992).Google Scholar
7. Friedmann, T.A., Clift, W.M., Johnsen, H.A., Klaus, E.J., McCarty, KF., Medlin, D.L., Mills, M.J., and Ottesen, D.K. in Laser Ablation in Materials Processing: Fundamentals and Applications, eds. Braren, D. et al. (MRS Symp. Proc. 285, Pittsburgh PA, 1993).Google Scholar
8. Geick, R., Penny, C.H., and Rupprecht, G., Phys. Rev. 146, 543 (1966).Google Scholar
9. Gielisse, P.J., Mitra, S.S., Plendl, J.N., Griffis, R.D., Mansur, L.C., Marshall, R., and Pascoe, A., Phys Rev. 155, 1039 (1967).Google Scholar
10. Semper Image Processing Package (Synoptics Ltd. 1989).Google Scholar
11. Reimer, L., Transmission Electron Microscopy: Physics of Image Formation and Microanalysis (Springer Verlag, Berlin, 1989) 173.Google Scholar
12. Thomas, J., Weston, N.E., O'Connor, T.E., J. Amer. Chem. Soc., 84 (24) 4619.CrossRefGoogle Scholar
13. McKenzie, D.R., Sainty, W.G., and Green, D., Materials Sci. Forum, 54&55, 193 (1990).Google Scholar
14. Narayan, J. and Nandedkar, A.S., Phil. Mag. B 63, 1181 (1991).Google Scholar
15. Schectman, D., Feldman, A., Vaudin, M.D., and Hutchison, J.L., Appl. Phys. Lett., 62 (5) (1993).Google Scholar
16. Devries, R.C., in Diamond and Diamond-Like Films and Coatings, eds. Clausing, R.E. et al. (Plenum, New York, 1991) 151.Google Scholar