Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-16T19:35:33.058Z Has data issue: false hasContentIssue false

Electronic Properties and Their Relations to Optical Properties in Rare Earth Doped III-V Semiconductors

Published online by Cambridge University Press:  21 February 2011

Akihito Taguchi
Affiliation:
NTT Basic Research Labs., Musashino-shi, Tokyo, JAPAN
Kenichiro Takahei
Affiliation:
NTT Basic Research Labs., Musashino-shi, Tokyo, JAPAN
Jyoji Nakata
Affiliation:
NTT LSI Labs., Atsugi-shi, Kanagawa, JAPAN
Get access

Abstract

We discuss the energy transfer mechanism between rare-earth 4f-shells and III-V semiconductor hosts. For Yb-doped InP, we have proposed an excitation and relaxation model, which explains experimental results for the electronic and optical properties. The Yb 4f-shell is excited by a recombination of an electron and a hole at an electron trap formed by Yb, which is located near the bottom of the conduction band of InP. At high temperatures, the relaxation energy of the Yb 4f-shell is back transferred as a host electron-hole pair, resulting in Yb luminescence quenching. We have found that Er-doped GaAs samples grown by metalorganic chemical vapor deposition contain as much C as Er. Rutherford back scattering and electronic property measurement results suggested that most of the Er atoms form complexes with C atoms, and these complexes are not electrically active. Such samples showed complicated Er 4f-shell luminescence spectra. To obtain a simple Er luminescence spectrum with a high peak intensity, O was intentionally doped with Er. Er-O complexes seemed to be formed in GaAs and these are responsible for simple and strong 4f-shell luminescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ennen, H. and Schneider, J., J. Electron. Mater. 14A, 115(1985).Google Scholar
[2] Smith, R. S., Müller, H. D., Ennen, H., Wennekers, P., and Maier, M., Appl. Phys. Lett. 50, 49(1987); P. Galltier, M. N. Charasse, J. Clmazelas, A. M. Huber, C. Grattepain, J. Siejka, and J. P. Hirtz, Proc. Int. Symp. GaAs and Related Compounds, Atlanta, Georgia, 1988. Int. Phys. Conf. Ser. 96, 61.Google Scholar
[3] Takahei, K. and Nakagome, H., Proc. Int. Symp. GaAs and Related Compounds, Karuizawa, Japan, 1989. Int. Phys. Conf. Ser. 106, 913; J. Appl. Phys. 72, 3674(1992).Google Scholar
[4] Pressel, K., Weber, J., Hiller, C., Ottenwälder, D., Kürner, W., Dörnen, A., Sholtz, F., Locke, K., Wiedlmann, D., and Cordeddu, F., Appl. Phys. Lett. 61, 560(1992).Google Scholar
[5] Whitney, P. S., Uwai, K., Nakagome, H., and Takahei, K., Appl. Phys. Lett. 53,2074(1988).Google Scholar
[6] Lambert, B., Corre, A. Le, Toudic, Y., Lhomer, C., Grandpierre, G., and Gauneau, M., J. Phys.: Condens. Matter 2, 479(1990).Google Scholar
[7] Ennen, H., Wagner, J., Müller, H. D., and Smith, R. S., J. Appl. Phys. 61, 4877(1987).Google Scholar
[8] Nakagome, H., Uwai, K., and Takahei, K., Appl. Phys. Lett. 53, 1726(1988); K. Takahei, P. S. Whitney, and K. Uwai, J. Appl. Phys. 65, 1257(1989).Google Scholar
[9] Pomrenke, G. S., Ennen, H., and Haydl, W., J. Appl. Phys. 59, 601(1986).Google Scholar
[10] Klein, P. B., Solid State Comunn. 65, 1097(1988).Google Scholar
[11] Köber, W. and Hangleiter, A., Appl. Phys. Lett. 52, 114(1988).Google Scholar
[12] Uwai, K., Nakagome, H., and Takahei, K., Appl. Phys. Lett. 50, 988(1987).Google Scholar
[13] Aszodi, G., Weber, J., Uihlein, Ch., Pu-lin, L., Ennen, H., Kaufmann, U., Schneider, J., and Windscheif, J., Phys. Rev. B 31, 7767(1985).Google Scholar
[14] Lambert, B., Toudic, Y., Grandpierre, G., and Corre, A. Le, Electron. Lett. 24, 1446(1988).Google Scholar
[15] Kasatkin, V. A. and Savel'ev, V. P., Sov. Phys. Semicond. 18, 1022(1984)Google Scholar
[16] Takahei, K., Taguchi, A., Nakagome, H., Uwai, K., and Whitney, P. S., J. Appl. Phys. 66, 4941(1989).Google Scholar
[17] Taguchi, A., Nakagome, H., and Takahei, K., J. Appl. Phys., 70, 5604(1991).Google Scholar
[18] Thonke, K., Pressel, K., Bohnert, G., Stapor, A., Weber, J., Moser, M., Molassioti, A., Hangleiter, A., and Scholz, F., Semicond. Sci. Technol. 5, 1124(1990).Google Scholar
[19] Boyn, R., Phys. Status Solidi (b) 148, 11(1988).Google Scholar
[20] Taguchi, A., Taniguchi, M., and Takahei, K., Appl. Phys. Lett. 60, 965(1992).Google Scholar
[21] Taguchi, A. and Takahei, K., Materials Science Forum 117–118, 303(1993).Google Scholar
[22] Nakata, J., Taniguchi, M., and Takahei, K., Appl. Phys. Lett., 61, 2665(1992).Google Scholar
[23] Chu, W. K., Mayer, J. W., and Nicolet, M. A., Backscattering Spectrometry (Academic, New York, 1978)Google Scholar
[24] Favennec, P. N., L'Haridon, H., Moutonnet, D., Salvi, M., and Gauneau, M., Jpn. J. Appl. Phys. 29, L524(1990).Google Scholar
[25] Michel, J., Benton, J. L., Ferrante, R. F., Jacobson, D. C., Eagleshaim, D. J., Fitzgerald, E. A., Xie, Y. -H., Poale, J. M., and Kimerling, L. C., J. Appl. Phys. 70, 2672(1991).Google Scholar
[26] Colon, J.E., Elsaesser, D. W., Yeo, Y. K., and Ilengehold, R. L., Mater. Res. Soc. Proc. 37, Boston, 499(1992).Google Scholar
[27] Takahei, K. and Taguchi, A., submillmd to J. Appl. Phys.Google Scholar