Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-06T15:18:11.588Z Has data issue: false hasContentIssue false

Electronic Structure of Beryllium, Magnesium and Silicon Impurity in Cubic Gallium Nitride

Published online by Cambridge University Press:  15 February 2011

V. A. Gubanov
Affiliation:
Physics Department, San Jose State University, San Jose, CA 95192, vgubanov@isc.sjsu.edu
E. Pentaleri
Affiliation:
Physics Department, San Jose State University, San Jose, CA 95192, vgubanov@isc.sjsu.edu
C. Y. Fong
Affiliation:
Department of Physics, University of California, Davis, CA 95616
B. M. Klein
Affiliation:
Department of Physics, University of California, Davis, CA 95616
Get access

Abstract

Beryllium (Be), magnesium (Mg) and silicon (Si) impurities in zinc-blende galliumnitride (c-GaN) are investigated by the tight binding-linear combination muffin-tin orbitals (TBLMTO) method using a 64-atom supercell. Be and Mg impurities at a Ga site, respectively induce partially empty acceptor-like bands at the valence band edge, which result in p-type conductivity of doped c-GaN. Si impurity in the Ga sublattice creates a partially occupied impurity subband overlapping with the conduction band edge and is responsible for the measured n-type conductivity. The impurity levels of a Si at a N site are located deep in the gap and do not influence much the conductivity of c-GaN. The shell-projected, total and partial densities of states and the charge density maps are used to elucidate the energy and spatial localizations of the impurity states

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett., 64, p. 1687 (1994).Google Scholar
2. Akasaki, I., Amno, H., Koide, N., Kotaki, M., and Manabe, K., Physica B, 185, p.428 (1993).Google Scholar
3. Davis, R., J. Cryst. Growth., 137, p. 161 (1994).Google Scholar
4. Nakamura, S., Mukai, T., Senoh, M., Jpn. J. Appl. Phys., 31, p. 2883 (1993).Google Scholar
5. Rowland, L. B., Doverspike, K., Gaskill, D. K., Appl. Phys. Lett., 66, p. 1495 (1995).Google Scholar
6. Amano, H., Kito, M., Hiramatsu, K., Akasaki, I., Jpn.J.Appl.Phys., 28, p. L2112 (1989).Google Scholar
7. Fischer, S., Wetzel, C., Haller, E. E., Appi. Phys. Lett., 67, p. 1. (1995).Google Scholar
8. Haske, P., Nakayama, H., Detchprohm, T., Hiramatsu, K., Sawaki, N., Appl. Phys. Lett., 68, p. 1362 (1996).Google Scholar
9. Wilson, R. G., Pearton, S. J., Abernathy, C. R., Zavada, J. M., Appl. Phys. Lett., 66, p. 2238 (1995).Google Scholar
10. Strite, S., Morkoc, H., J. Vac. Sci. Technol. B, 10, p. 1237 (1992).Google Scholar
11. Kuo, T. J., Chiu, T. H., Cunningham, J. E., Goossen, K.W., Fonstad, C. G., Ren, F., Electron. Lett., 26, p. 1260 (1990).Google Scholar
12. Talwar, D. N., Phys. Rev. B., 52, p. 8121 (1995).Google Scholar
13. Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Yamada, T., Mukai, T., Jpn. J. Appl. Phys., 34, p.L1332, p. 797 (1995).Google Scholar
14. Mohs, G., Fluegel, B., Giessen, H., Tajalli, H., Peyghambarian, N., Chiu, P., Phillips, B. S., Osinski, M., Appl. Phys. Lett., 67, p. 1515 (1995).Google Scholar
15. van Schilfgaarde, M., Paxton, T. A., Jepsen, O., Andersen, O.K., TB-LMTO Program - Version 44, Max Plank Institute for Solid State Physics, 1994.Google Scholar
16. Leim, T., Moustakas, T. D., Graham, R. J., He, Y., Berkowitz, S., J. Appi. Phys., 71, p. 4933 (1992).Google Scholar
17. Hedin, K., Lundqvist, B. I., J. Phys., C 4, p.2.064 (1971).Google Scholar
18. Gubanov, V. A., Wright, A. F., Nelson, J. S., Fong, C. Y., Klein, B. M., Proceedings of Fall 1995 MRS Meeting, Boston, 1995 (in press).Google Scholar
19. Jenkins, D. W., Dow, J.D., Phys. Rev. B, 39, p. 3317 (1989).Google Scholar