Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-23T15:35:59.418Z Has data issue: false hasContentIssue false

Ellipsometric Study of the Interface Between Silicon and Silica

Published online by Cambridge University Press:  21 February 2011

R. H. Doremus
Affiliation:
Materials Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
S. C. Kao
Affiliation:
Komag, 275 South Hillview Drive, Milpitas, CA 95035
Get access

Abstract

Ellipsometric measurements of surfaces of oxidized silicon give information on the optical properties, structure and composition of the interface between the silicon and oxide. From such measurements in ambient liquids with different refractive indices, some close to that of the oxide, we conclude that there is an interfacial layer about one nm thick at all oxide thicknesses. This layer is either a transition layer of partially oxidized silicon or a layer of silicon of higher absorption than bulk silicon. The oxide has the refractive index of vitreous silica at all thicknesses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kao, S. C., PhD Thesis, Rensselaer Polytechnic Institute, 1992.Google Scholar
2 Hattori, T. and Suzuki, T., Appl. Phys. Lett. 43, 470 (1983).CrossRefGoogle Scholar
3 Hollinger, G., Saoudi, R., Ferret, P., and Pitaval, M., in The Physics and Chemistry of SiO2 and Si-SiO2 Interfaces, edited by Helms, C. R. and Deal, B. E., (Plenum Press, New York, 1988), p. 211.CrossRefGoogle Scholar
4 Grunthaner, P. J., Hecht, M. N., Grunthaner, F. J., Johnson, N. M., J. Appl. Phys., 61, 629 (1987).Google Scholar
5 Niwano, M. et al. , J. Vac. Sci. Tech. A9 , 195 (1991).Google Scholar
6 Carim, A. H. and Sinclair, R., J. Elec. Soc., 134, 741 (1987).Google Scholar
7 Ourmazd, A., Taylor, D. W., Rentschler, J. A., Bevk, J., Phys. Rev. Lett. 59 , 213 (1987).Google Scholar
8 Fuoss, P. H., Norton, L. J., Brennan, S., Fischer-Colbrie, A., Phys. Rev. Lett. 60 , 600 (1988).Google Scholar
9 Taft, E. and Cordes, L., J. Electr. Soc. 126, 131 (1979).Google Scholar
10 Aspnes, D. E. and Theeten, J. B., J. Electr. Soc. 127, 1359 (1980).Google Scholar
11 Jellison, G. E., J. Appl. Phys., 69, 7627 (1991).CrossRefGoogle Scholar
12 Pedinoff, M. E., Mayer, D. C., Stafsudd, O. M., Dunn, G. L., Appl. Optics 21, 3307, (1982).Google Scholar
13 Chao, T. S., Lee, C. S., Lee, T. F., J. Electr. Soc. 138, 1756 (1991).CrossRefGoogle Scholar
14 Kalmitsky, A. et al. , J. Electr. Soc. 137, 235 (1990).Google Scholar
15 Schwarz, S. A., Barton, R. W., Ho, C. P., and Helms, C. R., J. Electr. Soc. 128, 110 (1981).Google Scholar
16 Vedam, K., Rai, R., Lukes, F., Srinivasan, R., J. Opt. Soc. Am. 58 , 526 (1968).Google Scholar
17 Yakovlev, V. A. and Irene, E. A., J. Electrochem. Soc. 139, 1450 (1992).Google Scholar
18 Bravman, J. C. and Sinclair, R., J. Electron Micro. Tech. 1, 53 (1984).CrossRefGoogle Scholar
19 Taft, E. A., J. Electr. Soc. 125, 968 (1978).Google Scholar
20 Hulthen, R., Physica Scripta 12, 342 (1975).Google Scholar
21 Russo, O. L., J. Electr. Soc. 127, 953 (1980).Google Scholar
22 Kao, S. C. and Doremus, R. H., in The Physics and Chemistry of SiO. and the Si-SiO2 , Interface, edited by Helms, C. R. and Deal, B. R. (Plenum Press, New York, 1993), p. 23.Google Scholar
23 Jacodine, R. J. and Schlegl, W. A., J. Appl. Phys. 37 , 2429 (1966).CrossRefGoogle Scholar
24 Kobeda, E. and Irene, E. A., J. Vac. Sci. Tech. B4 , 720 (1986); B5 , 15 (1987); B6 , 474 (1988).Google Scholar
25 Fitch, J. T., Bjorkman, C. H., Lucovsky, G., Pollak, F. H. and Yin, X., J. Vac. Sci. Tech. B7 , 775 (1989).Google Scholar
26 Lucovsky, G., Manitini, M. J., Srivastava, J. K., and Irene, E. A., ibid B5 , 530 (1987).Google Scholar