Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-20T21:30:15.766Z Has data issue: false hasContentIssue false

Embedded Gold Clusters: Growth in Glass and Optical Absorption Spectra

Published online by Cambridge University Press:  10 February 2011

P. G. N. Rao
Affiliation:
Materials Science & Engineering Dept., Rensselaer Polytechnic Institute, Materials Research Center, Troy, NY 12180–3590, raop2@rpi.edu
R. H. Doremus Ph.D.
Affiliation:
Materials Science & Engineering Dept., Rensselaer Polytechnic Institute, Materials Research Center, Troy, NY 12180–3590, doremr@rpi.edu, contact author
Get access

Abstract

Optical absorption of nanosized particles in glass was measured. The plasma absorption band was completely spread out for particles below about 1.5 ran in diameter, as also has been found by gold particles in water and a polymer. The growth kinetics suggested growth of spherical particles controlled by diffusion of gold from the matrix to the particles, and a constant number of growing particles, giving a narrow size distribution of particles. For particles below about one ran in diameter (31 gold atoms), the optical absorption was proportional to λ−4, as expected if the absorption results from free electrons in the particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tanahashi, J., et al., J. Appl. Phys. 79, p. 1244 (1996).Google Scholar
2. Leitoer, A., Mol. Phys. 70, p. 179 (1990).Google Scholar
3. Haglund, R.F., Yang, L., Magruder, R.H., Wittig, J.E., Beiker, K., and Zuhr, R.A., Opt. Lett. 18, p. 373 (1993).Google Scholar
4. Kreibig, U. and Genzel, L., Surf. Sci. 156, p. 678 (1985).Google Scholar
5. Halperm, W.P., Rev. Mod. Phys. 58, p. 533 (1986).Google Scholar
6. de Heer, W.A., Rev. Mod. Phys. 65, p. 611 (1993).Google Scholar
7. Brack, M., Rev. Mod. Phys. 65, p. 677 (1993).Google Scholar
8. Broglia, R.A., Com. Phys. 35, p. 95 (1994).Google Scholar
9. Fedrego, S., Harbich, W., and Buttet, J., Phys. Rev. B47, p. 10,706 (1993).Google Scholar
10. Hovel, H., Fritz, S., Hilger, A.H., Kreibig, U., and Vollmer, M., Phys. Rev. B48, p. 18, 178 (1993).Google Scholar
11. Charlé, K.P., König, L., Rabin, J., and Schulze, W., Z. Phys. D35, p. 159 (1996).Google Scholar
12. Duff, D.G., Baiker, A., and Edwards, P.P., Langmuir 9, p. 2301 (1993).Google Scholar
13. Lamber, R., Wetjen, S., Schulz-Ekloff, G., and Baalmann, A., J. Phys. Chem. 99, p. 13, 834 (1995).Google Scholar
14. Doyle, W.J., Phys. Rev. 111, p. 1067 (1958).Google Scholar
15. Doremus, R.H., J. Chem. Phys. 40, p. 2389 (1964); 42, p. 414 (1965).Google Scholar
16. Kreibig, U., J. Phys. F: Metal Phys. 4, p. 999 (1974).Google Scholar
17. Doremus, R.H., Rates of Phase Transformations. Academic Press, Orlando, FL, 1985, p. 22.Google Scholar
18. Rao, P. and Doremus, R.H., J. Noncryst. Solids 203, p. 202 (1996).Google Scholar
19. Mie, G., Ann. Phys. 25, p. 377 (1908).Google Scholar
20. Otter, M., Z. Physik 161, p. 163 (1961).Google Scholar
21. Thèye, M.L., Phys. Rev. B2, p. 3060 (1970).Google Scholar
22. Doremus, R.H., Kao, S.C., and Garcia, R., Appl. Opt. 31, p. 5773 (1992).Google Scholar
23. Mott, N.F. and Jones, H., “The Theory of the Properties of Metals and Alloys”, Dover, p. 105ff (1958).Google Scholar
24. Doremus, R.H., in Symposium on Nucleation and Crystallization in Glasses and Melts., Am. Cer. Soc., Columbus, OH, 1967, p. 19.Google Scholar
25. Chaudhari, P., Gracyk, J.F., and Herd, L.R., Phys. Stat. Sol 51b, p. 801 (1972); Phys. Rev. Lett. 29, p. 425 (1972).Google Scholar
26. Doremus, R.H. and Turkalo, A.M., J. Phys. Chem. Glasses 13, p. 14 (1972).Google Scholar