Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-20T11:17:29.709Z Has data issue: false hasContentIssue false

Encapsulation of Ibuprofen in Mesoporous Silica: Solid State NMR Characterization

Published online by Cambridge University Press:  10 February 2011

Florence Babonneau
Affiliation:
Chimie de la Matière Condensée, UPMC/CNRS, Paris, France.fb@ccr.jussieu.fr
Lydie Camus
Affiliation:
Chimie de la Matière Condensée, UPMC/CNRS, Paris, France.fb@ccr.jussieu.fr
Nathalie Steunou
Affiliation:
Chimie de la Matière Condensée, UPMC/CNRS, Paris, France.fb@ccr.jussieu.fr
Ainhoa Ramila
Affiliation:
Departamendo de Quimica Inorganica y Bioinorganica, Facultad de Farmacia, UCM, Madrid, Spain
Maria Vallet-Regi
Affiliation:
Departamendo de Quimica Inorganica y Bioinorganica, Facultad de Farmacia, UCM, Madrid, Spain
Get access

Abstract

Mesoporous silica materials have been studied for the time-dependent delivery of bioactive agents. It has already been shown that ibuprofen molecules can be encapsulated with loading as high as 30 wt% in MCM-41 silica, functionalized or not by amino groups. Interactions between the guest molecules and the host matrix have been investigated by 1H, 29Si and 13C solid state NMR spectroscopy. These experiments demonstrate an extremely high mobility of the ibuprofen molecules when the matrix is not functionalized, despite of the presence of a carboxylic function on the ibuprofen molecules. On the contrary, when the silica matrix is functionalized by amino groups, the 13C NMR response shows a strong restriction in mobility suggesting the existence of interactions between the amino groups and the carboxylic groups.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Unger, K., Rupprecht, H., Valentin, B. and Kircher, W., Drug Dev. Ind. Pharm. 9, 69 (1983).Google Scholar
2. Böttcher, H., Slowik, P. and Suss, W., J. Sol-Gel Sci. Technol. 13, 277 (1998).Google Scholar
3. Falaize, S., Radin, S. and Ducheyne, P., J. Am. Ceram. Soc. 82, 969 (1999).Google Scholar
4. Ahola, M. S., Säilynoja, E. S., Raitavuo, M. H., Vaahtio, M. M., Salonen, J. I. and Yli-Urpo, A. U. O., Biomaterials 22, 2163 (2001).Google Scholar
5. Radin, S., Ducheyne, P., Kamplain, T. and Tan, B. H., J. Biomed. Mat. Res. 57, 313 (2001).Google Scholar
6. Czuryszkiewicz, T., Ahvenlammi, J., Kortesuo, P., Ahola, M., Kleitz, F., Jokinen, M., Lindén, M. and Rosenholm, J. B., J. Non-Cryst. Solids 306, 1 (2002).Google Scholar
7. Kortesuo, P., Ahola, M., Karlsson, S., Kangasniemi, I., Yli-Urpo, A. and Kiesvaara, J., Biomaterials 21, 193 (2000).Google Scholar
8. Hall, S. R., Walsh, D., Green, D., Oreffo, R. and Mann, S., J. Mat. Chem. 13, 186 (2003).Google Scholar
9. Vallet-Regi, M., Ramila, A., del Real, R. P. and Pérez-Pariente, J., Chem. Mater. 13, 308 (2001).Google Scholar
10. Munoz, B., Ramila, A., Pérez-Pariente, J., Diaz, I. and Vallet-Regi, M., Chem. Mater. 15, 500 (2003).Google Scholar
11. Kortesuo, P., Ahola, M., Kangas, M., Yli-Urpo, A., Kiesvaara, J. and Marvola, M., Int. J. Pharm. 221, 107 (2001).Google Scholar
12. Aughenbaugh, W., Radin, S. and Ducheyne, P., J. Biomed. Mat. Res. 57, 321 (2001).Google Scholar
13. Freer, A. A., Bunyan, J. M., Shankland, N. and Sheen, D. B., Acta. Cryst. C49, 1378 (1993).Google Scholar