Article contents
Enhancing Light-trapping and Efficiency of Solar Cells with Photonic Crystals
Published online by Cambridge University Press: 01 February 2011
Abstract
A major route to improving solar cell efficiencies is by improving light trapping in solar absorber layers. Traditional light trapping schemes involve a textured metallic back reflector that also introduces losses at optical wavelengths. Here we develop alternative light trapping schemes with a-Si:H thin film solar cells, that do not use metallic components, thereby avoiding losses. We utilize low loss one-dimensional photonic crystals as distributed Bragg reflectors (DBR) at the backside of the solar cells. The DBR is constructed with alternating layers of crystalline Si and SiO2. Between the DBR and the absorber layer, there is a layer of 2D photonic crystal composed of amorphous silicon and SiO2. The 2D photonic crystal layer will diffract light at oblique angles, so that total internal reflection is formed inside the absorber layer. We have achieved enhanced light-trapping in both crystalline and amorphous silicon solar cells at near-infrared wavelengths where absorption lengths are very large. Very high absorption is achieved throughout optical wavelengths. The optical modeling is performed with a rigorous 3 dimensional scattering matrix approach where Maxwell¡¯s equations are solved in Fourier space.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2007
References
- 13
- Cited by