Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T08:38:19.764Z Has data issue: false hasContentIssue false

Epitaxial Growth and Thermal Stability of CoSi2 Layer on (100) Si from Co-C Films without Capping Layer

Published online by Cambridge University Press:  10 February 2011

Hwa Sung Rhee
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology. 373–1 Koosung-dong, Yusung-gu. Taejon 305–701, Korea, btahn@cais.kaist.ac.kr
Dong Kyun Sohn
Affiliation:
Research and Development Division, LG Semicon, Cheongju 361–480, Korea
Byung Tae Ahn
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology. 373–1 Koosung-dong, Yusung-gu. Taejon 305–701, Korea, btahn@cais.kaist.ac.kr
Get access

Abstract

A uniform epitaxial CoSi2 layer was grown on (100) Si substrate by rapid thermal annealing at 800°C in N2 ambient without capping layers from an amorphous cobalt-carbon film. The amorphous cobalt-carbon film was deposited on Si substrate by the pyrolysis of cyclopentadienyl dicarbonyl cobalt. Co(η5-C5H5)(CO)2. at 350°C. The leakage current measured on the junction, fabricated with the epitaxial CoSi2 layer and annealed at 1000°C for 30 s. was as low as that of the as-fabricated junction without silicide. indicating that epitaxial (100) CoSi2 is thermally stable at temperatures even above 1000°C and has a potential applicability to the salicide process in sub-half micron devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Maex, K., Mater. Sci. Eng., R. Rep. 11, (1993) 53.10.1016/0927-796X(93)90001-JGoogle Scholar
[2] Pretorius, R. and Mayer, J. W., J. Appl. Phys. 81, (1997) 2448.10.1063/1.364252Google Scholar
[3] Dass, M. L. A., Fraser, D. B. and Wei, C. S.. Appl. Phys. Lett. 58, (1991) 1308.10.1063/1.104345Google Scholar
[4] Tung, R. T., Appl. Phys. Lett. 68, (1996) 3461.10.1063/1.115793Google Scholar
[5] Rhee, H. S.. Jang, T. W., and Ahn, B. T., Appl. Phys. Lett. 74, (1999) 1003.10.1063/1.123436Google Scholar
[6] Rhee, H. S. and Ahn, B. T., (unpublished).Google Scholar
[7] Dormans, G. J. M., J. Crystal Growth 108, (1991) 806.10.1016/0022-0248(91)90261-3Google Scholar
[8] Dormans, G. J. M., Meekes, G. J. B. M. and Staring, E. G. J., J. Crystal Growth 114, (1991) 364.10.1016/0022-0248(91)90054-9Google Scholar
[9] Gross, M. E., Schnoeskranz, K., Brasen, D. and Luftman, H., J. Vac. Sci. Technol. B6, (1988) 1548.10.1116/1.584212Google Scholar
[10] Adams, D. P., Yalisove, S. M., and Eaglesham, D. J., J Appl. Phys. 6, (1994) 5190.Google Scholar
[11] Rajan, K., Hsiung, L. M., Jimenez, J. R., Schowalter, L. J., Ramanathan, K. V., Thomson, R. D., and Lyer, S. S., J. Appl. Phys. 70, (1991) 4853.10.1063/1.349026Google Scholar
[12] Goto, K., Fushida, A., Watanabe, J.. Sukegawa, T., Kawamura, K., Yamazaki, T., and Sugii, T., Tech. Dig. Int. Electron Devices Meet, (1995) 449.Google Scholar