Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-16T19:43:23.424Z Has data issue: false hasContentIssue false

Epitaxial Growth of GaN Thin Films Using a Hybrid Pulsed Laser Deposition System

Published online by Cambridge University Press:  10 February 2011

Philippe Mérel
Affiliation:
INRS-Énergie et Matériaux, 1650 boul. Lionel Boulet, Varennes, Québec, Canada J3X IS2, merel@inrs-ener.uquebec.ca
Mohamed Chaker
Affiliation:
INRS-Énergie et Matériaux, 1650 boul. Lionel Boulet, Varennes, Québec, Canada J3X IS2, merel@inrs-ener.uquebec.ca
Henri Pépin
Affiliation:
INRS-Énergie et Matériaux, 1650 boul. Lionel Boulet, Varennes, Québec, Canada J3X IS2, merel@inrs-ener.uquebec.ca
Malek Tabbal
Affiliation:
Department of Physics, American University of Beirut, P.O. Box: 11–0236, Bliss Street, Beirut, Lebanon.
Get access

Abstract

A hybrid Pulsed Laser Deposition system was developed to perform epitaxial growth of GaN on sapphire(0001). This system combines the laser ablation of a cooled Ga target with a well-characterized atomic nitrogen source. Taking advantage of the flexibility of this unique deposition system, high quality GaN thin films were deposited by optimizing both the laser intensity and the nitrogen flux. To date, our best GaN films show a FWHM of the GaN(0002) rocking curve peak equal to 480 arcsec. This result has been obtained at a laser intensity of I = 7×107 W/cm2, a substrate temperature of 800°C and under Ga-rich growth conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Morkoq, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B. and Bums, M., J. Appl. Phys. 76, 1363(1994).10.1063/1.358463Google Scholar
[2] Nakamura, S., Harada, Y. and seno, M., Appl. Phys. Lett. 58, 2021(1991).10.1063/1.105239Google Scholar
[3] Schikora, D., Hanklen, M., As, D.J., Lischka, K., Litz, T., Woay, A., Buhrow, T. and Henneberger, F., Phys. Rev B54 8381 (1996).10.1103/PhysRevB.54.R8381Google Scholar
[4] Kapolnek, D., Keller, S., Vetury, R., Underwood, R., Kozodoy, P., DenBaars, S., Mishra, U., Appl. Phys. Lett. 71, 1204(1997).10.1063/1.119626Google Scholar
[5] Lowndes, D. H., Geohegan, D. B., Puretzky, A. A., Norton, D. P. and Rouleau, C. M., Science 273 898(1996).10.1126/science.273.5277.898Google Scholar
[6] MWrel, P., Tabbal, M., Chaker, M., Moisan, M., Ricard, A., Plasma Sources Sci. Technol. 7, 550(1998).10.1088/0963-0252/7/4/012Google Scholar
[7] Moisan, M. and Zakrzewski, Z., Rev. Sci. Instrum. 58, 1895(1987).10.1063/1.1139539Google Scholar
[8] Moisan, M., Beaudry, C. and Leprince, P., Phys. Lett. 50A, 125 (1974).Google Scholar
[9] Zywietz, T., Neugebauer, J. and Scheffler, M., Appl. Phys. Lett. 73, 488(1998).10.1063/1.121909Google Scholar