Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-13T05:40:43.104Z Has data issue: false hasContentIssue false

Epitaxial Thin Films And Heterostrcutures of Various Isotropic Metallic Oxides for Device Applications

Published online by Cambridge University Press:  15 February 2011

C. B. Eom
Affiliation:
Duke University, Department of Mechanical Engineering and Materials Science, Durham, NC 27708 Work performed while at AT&T Bell Laboratories
Julia M. Phillips
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R. J. Cava
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

We have grown epitaxial thin films of various isotropic metallic oxides such as Sr1-xCaxRuO3 and La8-xSrxCu8O2Oin situ by 90° off-axis sputtering. These metallic oxides are pseudo-cubic perovskites with essentially isotropic properties, which could be ideal normal metals for SNS junctions in superconducting devices and for electrodes in ferroelectric devices. We have fabricated epitaxial ferroelectric heterostructures [SrRuO3/Pb(Zr0. 52 Ti0.4 8) O3 /SrRuO3] employing isotropic metallic oxide (SrRuO3) electrodes on substrates of (100) SrTiO3 and (100) Si with an yttria stabilized zirconia buffer layer. They exhibit superior fatigue characteristics over those made with metal electrodes, showing little degradation over 10 cycles, with a large remnant polarization (27 μC/cm2 ). We have also grown epitaxial superconducting heterostructures (YBa2Cu3O7 / La8-xSrxCu8O2O / YBa2Cu3O7 ) with a copper-oxide-based isotropic metallic oxide (La8-xSrxCu8O20) normal metal barrier. X-ray diffraction and cross-sectional transmission electron microscopy reveal these heterostructures to have high crystalline quality and clean interfaces. This material will facilitate fabrication of ideal SNS Josephson junctions with low boundary resistance due to its excellent chemical compatibility and lattice match with cuprate superconductors and will be useful for determining the source of interface resistance in such heterostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Eom, C. B., Cava, R.J., Fleming, R.M., Phillips, Julia M., van Dover, R.B., Marshall, J.H., Hsu, J.W.P., Krajewski, J. J and Peck, W.F. Jr., Science, 258, 1766 (1993).Google Scholar
2. Eom, C. B., Cava, R.J., Phillips, Julia M. and Werder, D.J., submitted to Appl Phys. Lett, (1994).Google Scholar
3. Cheung, J.T., Morgan, P.E.D., Lowndes, D.H., Zheng, X.-Y., and Breen, J., Appl. Phys. Lett., 62, 2045 (1993)Google Scholar
4. Satyalakshmi, K.M., Mallya, R.M., Ramanathan, K.V., Wu, X.D., Brainard, B., Gautier, D.C., Vasanthacharya, N.Y., and Hedge, M.S., Appl. Phys. Lett., 62, 1233 (1993)1. J. Randall, and R. Ward, J. Am. Chem. Soc. 81, 2629 (1959)CrossRefGoogle Scholar
5. Gupta, A., Hussey, B.W., Guloy, A.M., Shaw, T.M., Saraf, R.F., Bringley, J.F., and Scott, B.A., J. Sol. St. Chem, 108, 202 (1994).Google Scholar
6. Desfeux, R., Hamot, J.F., Mercey, B., Simon, C., Hervieu, M. and Raveau, B., Physica C, 221, 205 (1994).Google Scholar
7. Callaghan, A., Moeller, C. W., and Ward, R., Inorg. Chem., 5, 1572 (1966)Google Scholar
8. Van Loan, Paul R., Ceramic Bulletin, 51, 231 (1972)Google Scholar
9. Bouchard, R.J. and Gillson, J.L., Mat. Res. Bull, 7, 873 (1972)Google Scholar
10. Bensch, W., Schmalle, H.W., Reller, A., Solid State Ionics, Diffusion & Reactions, 43, 171 (1990).Google Scholar
11. Eom, C.B. et al., Appl. Phys. Lett., 55, 595 (1989).Google Scholar
12. Eom, C.B. et al., Physica C 171, 351 (1990).Google Scholar
13. Kwo, J., Fleming, R.M., Kao, H.L., Werder, D.J., Chen, C.H., Appl. Phys. Lett. 60, 1905 (1992).Google Scholar
14. Wada, Osamu et al. Jpn. J. Appl. Phys. 30, L722 (1991).Google Scholar
15. Hawley, M., Raistrick, I.D., Berry, J.G., Houlton, R.J., Science, 251, 1588 (1991).Google Scholar
16. Gerber, C., Anselmetti, D., Bednorz, J. G., Mannhart, J., Schlom, D.G., Nature, 350, 279 (1991).Google Scholar
17. Scott, J.F. and Paz de Araujo, C.A., Science, 246, 1400 (1989).Google Scholar
18. Ramesh, R., Chan, W.K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J.M., Keramidas, V.G., Fork, D.K., Lee, J., and Safari, A., Appl. Phys. Lett. 61, 1537 (1992).Google Scholar
19. Ramesh, R., Inam, A., Chan, W.K., Wilkens, B., Myers, K., Remschnig, K., Hart, D.L., Tarascon, J.M., Science, 252, 944 (1991).Google Scholar
20. Eom, C.B., van Dover, R.B., Phillips, Julia M., Werder, D.J., Marshall, J. H., Chen, C.H., Cava, R.J., Fleming, R.M. and Fork, D.K., Appl. Phys. Lett., 63, 2570 (1993).Google Scholar
21. Sawyer, C.B. and Tower, C.H., Phy. Rev. 35, 269 (1930).Google Scholar
22. Bernstein, S.D., Wong, T.Y., Kisler, Y., and Tustison, R.W., J. Mater. Res., 8, 12 (1993)Google Scholar
23. Cheung, J.T. and Neurgaonkar, R.R., 1993 Materials Research Society Spring Meeting, San Francisco, CA. April (1993),Google Scholar
24. Kupriyanov, M.Y. and Likharev, K.K., IEEE Trans. Magn. 27, 2460 (1991).Google Scholar
25. Char, K., Colcough, M.S., Geballe, T.H., and Myers, K.E., Appl. Phys. Lett., 62, 196 (1993).Google Scholar
26. Char, K., et al Appl. Phys. Lett., 63, 2420 (1993).Google Scholar
27. Eom, C.B., Fleming, R.M., Phillips, Julia M., Cava, R.J., Marshall, J.H., Werder, D.J., Chen, C.H., Krajewski, J.J., and Peck, W.F. Jr.., MRS Spring Meeting Abstract, pp 401 (1993)Google Scholar
28. Olsson, E. and Char, K., Appl. Phys. Lett., 64, 1292 (1994).Google Scholar
29. Eom, C.B., Marshall, A.F., Triscone, J.-M., Wilkens, B., Laderman, S.S., and Geballe, T.H., Science, 251, 780 (1991).CrossRefGoogle Scholar
30. Er-Rakho, L., Michel, C. and Raveau, B., J. Solid State Chemistry, 73, 514 (1988).Google Scholar
31. Bringley, J.F., Scott, B.A., Placa, S.J. La, Boehme, R.F., Shaw, T.M., McElfresh, M.W., Trail, S.S. and Cox, D.E., Nature, 347, 263 (1990).Google Scholar