Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-01T05:20:04.649Z Has data issue: false hasContentIssue false

Esca Microscopy on Elettra: Chemical Characterization of Surfaces and Interfaces With Sub-Micron Spatial Resolution

Published online by Cambridge University Press:  10 February 2011

m. Kiskinova
Affiliation:
Sincrotrone Trieste, Area Science Park, Basovizza, 34012-Trieste, Italy
L. Casalis
Affiliation:
Sincrotrone Trieste, Area Science Park, Basovizza, 34012-Trieste, Italy
L. Gregoratti
Affiliation:
Sincrotrone Trieste, Area Science Park, Basovizza, 34012-Trieste, Italy
S. Gunther
Affiliation:
Sincrotrone Trieste, Area Science Park, Basovizza, 34012-Trieste, Italy
M. Marsi
Affiliation:
Sincrotrone Trieste, Area Science Park, Basovizza, 34012-Trieste, Italy
Get access

Abstract

The chemical sensitivity, spatial resolution and data acquisition rates achieved with the scanning photoelectron microscope built at ELETTRA, a third-generation synchrotron facility in Italy has made it an indispensable tool for surface analysis of laterally heterogeneous materials. The information on the composition and evolution of coexisting phases, mass transport and other surface processes occurring on a microscopic scale can be obtained by combining elemental and chemical mapping with core and valence level photoelectron spectromicroscopy with spatial resolution better than 0.15 μm and energy resolution better than 0.5 eV. Selected recent results will be presented to illustrate the capabilities and some of the possible applications of synchrotron radiation spectromicroscopy for characterization of complex spatially heterogeneous materials and studies of dynamic processes related to the interface chemical structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Casalis, L., Jark, W., Kiskinova, M., Melpignano, P., Morris, D., Rosei, R., Savoia, A., Contarini, S., DeAngelis, L., Gariazzo, C., Nataletti, P., Morrison, G., Rev. Sci. Instr. 66, p. 4870 (1995).Google Scholar
2. Kirz, J., Jacobsen, Ch., Howells, M.. Quart. Rev. of Biophysics 28, p. 33 (1995) and references therein.Google Scholar
3. Marsi, M., Casalis, L., Gregoratti, L., Günther, S. ,Kolmakov, A., Kovac, J., Lonza, D., Kiskinova, M., J. Electr. Specar. Rel. Phenom. 84, p. 73 (1997).Google Scholar
4. Briggs, D., Seah, M.P, Practical Surface Analysis, John Wiley&Sons, Chichester (1990).Google Scholar
5. Kiskinova, M., Int. Journ. Imag. Syst. Technol. 8, p. 462 (1997).Google Scholar
6. Rotermund, H. H. Jakubith, S., Kubala, S.. von Oertzen, A., Ertl, G., J. Electr. Spectr. Rel. Phenom. 52 (1990) 811.Google Scholar
7. Imbihl, R., Ertl, G., Chem. Rev. 95 (1995) 697.Google Scholar
8. Casalis, L., Gregoratti, L, Kiskinova, M., Margaritondo, G., Fernandez, F. M., Morrison, G.,Potts, A. W, Surf. Interf. Anal. 25, p. 374 (1997).Google Scholar
9. Potts, A., Morrison, G. R., Günther, S., Kiskinova, M., Marsi, M., Chem, Phys. Lett. (1998) in press.Google Scholar
10. Potts, A. et al, in preparation.Google Scholar
11. Nicolet, M.–A., Lau, S.S., VLSI Electronics: Microstructure Science, Vol.6, 1983, pp. 329463.Google Scholar
12. Endo, A. and Ino, S., Surf. Sci. 293, p. 165 (1993) and references therein.Google Scholar
13. Calliari, L., Sancrotti, M., Braicovich, L., Phys. Rev. B30 p. 4885 (1984).Google Scholar
14. Suo, Z., Wang, W., Yang, M., Appl. Phys. Lett. 64 p. 1944 (1994).Google Scholar
15. Yasunaga, H., Surf. Sci. 242, p. 171 (1991).Google Scholar
16. Günther, S., Kolmakov, A., Kovac*, J., Marsi, M. and Kiskinova, M., Phys. Rev. B 56, p. 5003 (1997).Google Scholar
17. Kolmakov, A., Ghnther, S., Kovac, J., Marsi, M., Casalis, L., Kaznacheev, K., Kiskinova, M., Surf. Sci. 389, p. 241 (1997).Google Scholar
18. Gregoratti, L., Günther, S., Kovac, J., Casalis, L., Marsi, M., Kiskinova, M., Phys. Rev. B57 (1998) in press.Google Scholar
19. Gregoratti, L. et al, in preparation.Google Scholar
20. Parikh, S.A, Lee, M.Y, Bennett, P.A, J. Vac. Sci. Technol. A 13, p. 1589 (1995); Surf. Sci.356 p. 53 (1996).Google Scholar
21. Dolbak, A.E, Olshanetsky, B.Z, Stenin, S.I, Teys, S.A, Gavrilova, T.A, Surf. Sci. 247, p. 32 (1991).Google Scholar
22. Himpsel, F.J, McFeely, F. R, Taleb-Ibrahimi, A., Jarmoff, J., Hollinger, G., Phys. Rev. B 38, p. 6084 (1988).Google Scholar
23. Alay, J.L, Hirose, M., J.Appl. Phys. 81, p. 1006 (1997).Google Scholar
24. Sarapatka, T. J, J. Electr. Specar. Rel. Phenom. 62, p. 335 (1993).Google Scholar
25. Mo, Y.–M., Legally, M. G, J. Cryst. Growth 11, p. 876 (1991).Google Scholar
26. Huang, K.–H, Ku, T.–S, Lin, D-S., Phys. Rev. B 56, p. 4878 (1997).Google Scholar
27. Colombo, L., Resta, R., Baroni, S., Phys. Rev. B 44, p. 5572 (1991).Google Scholar
28. Knözinger, H., Taglauer, E., Handbook of Heterogeneous Catalysis, , VCH-Verlag, J., vol.1, p. 216, (1997).Google Scholar
29. Günther, S., Marsi, M., Kolmakov, A., Kiskinova, M., Noeske, M., Taglauer, E., Schubert, U. A, Mestl, G., Knözinger, H., J. Phys. Chem. 101, p.10004 (1997).Google Scholar