Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-26T18:57:57.570Z Has data issue: false hasContentIssue false

Evaluation of Anti-Phase-Boundaries in GaAs/Si Heterostructures by Transmission Electron Microscopy

Published online by Cambridge University Press:  25 February 2011

O. Ueda
Affiliation:
Eujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
T. Soga
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
T. Jimbo
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
M. Umeno
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
Get access

Abstract

The nature and behavior of anti-phase-boundaries in GaAs/Si heterostructures using GaP, GaP/GaAsP and GaAsP/GaAs strained layer superlattices as intermediate buffer layers, have been investigated by transmission electron microscopy. It has been found that anti-phasedomains are very complicated three dimensional polygons consisting of several sub-boundaries in different orientations. Self-annihilation of anti-phase-domains during crystal growth of GaAs on (001)just or (001)2°off Si substrates is directly observed for the first time through planview and cross-sectional observations. Based on these findings, a mechanism of annihilation of these domains is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fischer, R., Morkoc, H., Neumann, D. A., Zabel, H., Choi, C., Otsuka, N., Longbone, M., and Erickson, L. P., J. Appl. Phys. 60, 1640 (1986).Google Scholar
2. Mazur, J. H., Washburn, J., Henderson, T., Klem, J., Masselink, W. T., Fischer, R., and Morkoc, H., Mat. Res. Soc. Symp. Proc. 37, 103 (1985).Google Scholar
3. Hull, R., Rosner, S. J., Koch, S. M., and Harris, J. S. Jr, Appl. Phys. Lett. 49, 1714 (1986).CrossRefGoogle Scholar
4. Ishida, K., Akiyama, M., and Nishi, S., Japan. J. Appl. Phys. 26, L163 (1987).Google Scholar
5. Otsuka, N., Choi, C., Nakamura, Y., Nagakura, S., Fischer, R., Peng, C. K., and Morkoc, H., Appl. Phys. Lett. 49, 277 (1986).Google Scholar
6. Al-Jassim, M. M., Blakeslee, A. E., Jones, K. M., and Asher, S. E., Inst. Phys. Conf. Ser. 87, 99 (1987).Google Scholar
7. Yamaguchi, M., Yamamoto, A., Tachikawa, M., Itoh, Y., and Sugo, M., Appl. Phys. Lett. 53, 2293 (1988).CrossRefGoogle Scholar
8. Hayafuji, N., Ochi, S., Miyashita, M., Tsugami, M., Murotani, T., and Kawagishi, A., J. Crystal Growth 93, 494 (1988).Google Scholar
9. Ueda, O., Soga, T., Jimbo, T., and Umeno, M., to be presented at the 9th Int. Conf. Crystal Growth, Sendai, Japan, 1989 (to be published in J. Crystal Growth).Google Scholar
10. Ishida, K., Akiyama, M., and Nishi, S., Japan. J. Appl. Phys. 26, L530 (1987).Google Scholar
11. Kroemer, H., J. Crystal Growth 81, 193 (1987).Google Scholar
12. Ueda, T., Nishi, S., Kawarada, Y., Akiyama, M., and Kaminishi, K., Japan J. Appl. Phys. 26, L530 (1987).Google Scholar
13. Mizuguchi, K., Hayafuji, N., Ochi, S., Murotani, T., and Fujikawa, K., J. Crystal Growth, 77, 509 (1986).CrossRefGoogle Scholar
14. Tafto, J. and Spence, J. C. H., J. Appl. Cryst. 15, 60 (1982).Google Scholar
15. Kuan, T. S., J. Appl. Phys. 54 (1983) 4408.CrossRefGoogle Scholar
16. Soga, T., Imori, T., Umeno, M., and Hattori, S., Japan. J. Appl. Phys. 26, L536 (1987).Google Scholar
17. Soga, T., Kohama, Y., Uchida, K., Tajima, M., Jimbo, T., and Umeno, M., J. Crystal Growth 93, 499 (1988).CrossRefGoogle Scholar
18. Petroff, P. M., J. Vac. Sci. Tech. B4, 874 (1986).Google Scholar