Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-13T18:52:28.916Z Has data issue: false hasContentIssue false

Evaluation of the Degradation Dynamics of Thin Silicon Dioxide Films Using Model-Independent Procedures

Published online by Cambridge University Press:  10 February 2011

R. Rodríguez
Affiliation:
Dept. Enginyeria Electrònica., Universitat Autonòma de Barcelona. 08193 Bellaterra. Barcelona. Spain, E-mail: R.Rodriguez@cc.uab.es
M. Nafría
Affiliation:
Dept. Enginyeria Electrònica., Universitat Autonòma de Barcelona. 08193 Bellaterra. Barcelona. Spain, E-mail: R.Rodriguez@cc.uab.es
E. Miranda
Affiliation:
Dept. Enginyeria Electrònica., Universitat Autonòma de Barcelona. 08193 Bellaterra. Barcelona. Spain, E-mail: R.Rodriguez@cc.uab.es
J. Suñé
Affiliation:
Dept. Enginyeria Electrònica., Universitat Autonòma de Barcelona. 08193 Bellaterra. Barcelona. Spain, E-mail: R.Rodriguez@cc.uab.es
X. Aymerich
Affiliation:
Dept. Enginyeria Electrònica., Universitat Autonòma de Barcelona. 08193 Bellaterra. Barcelona. Spain, E-mail: R.Rodriguez@cc.uab.es
Get access

Abstract

The degradation and breakdown of thin silicon dioxide films has been analysed using a two-step stress method. This procedure allows the evaluation of the degradation induced by the electrical stress without any assumption about the microscopic nature of the degradation process. The method has been used to analyse and compare the degradation dynamics when constant-voltage (CVS) and constant-current stresses (CCS) are applied to the oxide. Moreover, it is shown that in the case of CVS, the fitting of the I-t characteristics can provide quantitative information about the degradation (degradation rate) and breakdown (mean-time-to-breakdown), without taking into account any degradation model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nafría, M., Suñé, J., Yélamos, D. and Aymerich, X., IEEE Trans. Electron Devices, Vol.43, p. 2215 (1996).Google Scholar
2.DiMaria, D.J., Cartier, E. and Arnold, D., J. Appl. Phys., Vol. 73. pp. 33673384 (1993)Google Scholar
3.Dumin, D.J., Maddux, J.R., Scott, R.S. and Subramoniam, R., IEEE Trans. Electron Devices, Vol.41, p.1570 (1994)Google Scholar
4.Rodríguez, R., Nafría, M., Miranda, E., Suñé, J. and Aymerich, X., IEEE Electron Device Lett., Vol 20, N° 7, pp. 317319 (1999)Google Scholar
5.DiMaria, D.J., Microelectron. Eng., Vol. 36, pp. 317320 (1997)Google Scholar