Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-20T21:24:54.919Z Has data issue: false hasContentIssue false

Evidence for Polycrystalline Si Surface Layer Formation by Argon Implantation and its Passivation by Atomic Hydrogen

Published online by Cambridge University Press:  25 February 2011

H.-C. Chien
Affiliation:
Engineering Science Program, the Pennsylvania State University, University Park, PA 16802
S. Ashok
Affiliation:
Engineering Science Program, the Pennsylvania State University, University Park, PA 16802
J. H. Slowik
Affiliation:
Xerox Webster Research Center, Webster, NY 14580
Get access

Abstract

Al/p-Si Schottky barriers formed on wafers implanted with 10–20 keV Ar exhibit low-temperature electrical properties characteristic of grain boun1dary transport Subsequent low-energy (0.4 keV), high fluence ( ∼ IOE18 cm−2) H implant is found to passivate the grain boundaries of the Ar implant-induced microcrystals. Extremely high Al/p-Si Schottky barrier heights are obtained following the dual implants, and deep level transient spectroscopy (DLTS) measurements reveal that H also alters the properties of traps introduced by the Ar implant, thus improving the diode characteristics.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ashok, S., Chow, T.P. and Baliga, B.J., Appl. Phys. Lett. 42, 687 (1983).Google Scholar
2. Ashok, S., Krautle, H. and Beneking, H., Appl. Phys. 45, 431 (1984).Google Scholar
3. Fonash, S.J., Solid State Technology 28, 201 (1985)7 Google Scholar
4. Seager, C.H. and Ginley, D.S., Appl. Phys. Lett. 34, 337 (1979).Google Scholar
5. Wang, J.-S., Fonash, S.J. and Ashok, S., IEEE Electron Dev. Lett. EDL–4, 432 (1983).Google Scholar
6. Slaoui, A., Barhdadi, A., Miller, J.C. and Siffert, P., Appl. Phys. A 39, 159 (1986).Google Scholar
7. Narayan, J., Fathy, D., Oen, O.S. and Holland, O.W., J. Vac. Sci. Technol. A 2, 1303 (1984).Google Scholar
8. Simov, S., Kalitzova, M., Danesh, P., Pahov, N., Bonhomme, P., Balossier, G. and Djakov, A., Vacuum 35, 527 (1985).Google Scholar
9. Vedam, K., McMarr, P.J. and Narayan, J., Appl. Phys. Lett. 47, 339 (1985).Google Scholar
10. Sze, S.M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), p. 279.Google Scholar
11. Seto, J.Y.H., J. Appl. Phys. 46, 5247 (1975).Google Scholar
12. Chien, H.-C. and Ashok, S., J. Appl. Phys. 60, 2886 (1986).Google Scholar
13. Ringel, S.A., Mu, X.C., Fonash, S.J. and Ashok, S., J. Vac. Sci. Technol. A 4, 2388 (1986).Google Scholar
14. Lang, D.V., J. Appl. Phys. 45, 3023 (1974).Google Scholar