Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-20T15:29:53.974Z Has data issue: false hasContentIssue false

Evidence of Silica Polymerization During Internal Nucleation of Glassy Lithium Disilicate

Published online by Cambridge University Press:  15 February 2011

Jane W. Adams
Affiliation:
Center for Ceramic Research, Rutgers University, Piscataway, NJ 08855–0909
Bernard H.W.S. De Jong
Affiliation:
Institute for Earth Sciences and Vening Meinesz Institute for Geodynamic Research, Utrecht University, 3508TA Utrecht, the Netherlands
Get access

Abstract

The principal problem in developing a theory of internal nucleation lies in the constitution of the nascent nuclei. To get at this constitution in an internally nucleating glass, oxygen and lithium core level x-ray photoelectron spectra have been measured on glassy and nucleated lithium disilicate and on the three stable crystalline compounds in the Li2O-SiO2 system. Our results indicate that nucleated lithium disilicate glass consists of completely polymerized silica in the formation of which non-bridging oxygens are consumed. During this silica polymerization lithium atoms move away from presumably four-fold coordinated sites towards higher coordinated ones.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jaccodine, R.J., J. Am. Ceram. Soc. 44, 472 (1961).Google Scholar
2. Matusita, K. and Tashiro, M., J. Non-Cryst. Sol. 11, 471 (1973).Google Scholar
3. Neilson, G.F. and Weinberg, M.C., J. Non-Cryst. Sol. 34, 137 (1979).Google Scholar
4. de Jong, B.H.W.S., Schramm, C.M. and Parziale, V.E., J. Am. Chem. Soc. 106, 4396 (1984).Google Scholar
5. de Jong, B.H.W.S., in Ullmann's Encyclopedia of Industrial Chemistry A 12, 365 (1989).Google Scholar
6. Weinberg, M.C. and Zanotto, E.D., J. Non-Cryst. Sol. 108, 99 (1989).Google Scholar
7. Adams, J.W., PhD thesis, Cambridge University, 1993.Google Scholar
8. Adams, J.W. and de Jong, B.H.W.S., in preparation.Google Scholar
9. Gotts, H.S. and Glick, A.J., Phys. Rev. B 27, 4729 (1983).Google Scholar
10. Siegbahn, K. et al., ESCA; atomic, Molecular and solid state structure by means of electron spectroscopy, (Almquist and Wiksells, Uppsala, 1967).Google Scholar
11. Brueckner, R., Chun, H.U., Goretzki, H. and Samet, M., J. Non-Cryst. Sol. 42, 49 (1980).Google Scholar
12. Našu, H., Heo, J. and Mackensie, J.D., J. Non-Cryst. Sol. 99, 140 (1988).Google Scholar
13. Sprenger, D., Bach, H., Meisel, W. and Gütlich, P., J. Non-Cryst. Sol. 126, 111 (1990).Google Scholar
14. Sprenger, D., Bach, H., Meisel, W. and Gütlich, P., in The physics of non-crystalline solids, edited by Pye, L.D., LaCourse, W.C. and Stevens, H.J., (Taylor and Francis, London, 1992) pp. 4247.Google Scholar
15. Liebau, F., Acta Cryst. 14, 389 (1961).Google Scholar
16. Bagus, P.S. and Bauschlicher, C.W., J. Electr. Spec. Rel. Phenom. 20, 183 (1980).Google Scholar
17. Burkhard, D.J.M., de Jong, B.H.W.S., Meyer, A.J.H.M. and van Lenthe, J.H., Geochim. Cosmochim. Acta 55, 3453 (1991).Google Scholar
18. Van Genechten, K.A., Mortier, W.J., Geerlings, P., J. Chem. Phys. 86, 5063 (1987).Google Scholar
19. Sauer, J., Haberlandt, H. and Schirmer, W., Structure and reactivity of modified zeolites, edited by Jacobs, P. A. et al. (Elsevier, Amsterdam, 1984) pp. 313320.Google Scholar
20. Kubicki, J.D. and Sykes, D., Am. Mineral. 78, 253 (1993).Google Scholar
21. Povey, A.F. and Sherwood, P.M.A., J. Chem. Soc. Faraday Trans. II 70, 1240 (1974).Google Scholar
22. de Jong, B.H.W.S., Ellerbroek, D. and Spek, A.L., Acta Cryst., submitted.Google Scholar