Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-27T07:00:21.611Z Has data issue: false hasContentIssue false

Evolution of Roughness on InP Layers Observed by Scanning Force Microscopy

Published online by Cambridge University Press:  15 February 2011

M. A Cotta
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R. A Hamm
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. N. G Chu
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
T. W Staley
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974 Materials Science Program, University of Wisconsin-Madison, Madison, WI53706
L. R Harriott
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
M. B Panish
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
H. Temkin
Affiliation:
Electrical Engineering Dept., Colorado State University, Fort Collins, CO 80523
Get access

Abstract

The evolution of surface roughness with increasing thickness of (100) InP layersgrown by metalorganic molecular beam epitaxy has been observed by scanningforce microscopy. The process of roughening gives rise to periodic elongatedfeatures on the surface aligned in the [011] direction, reflecting the surfaceanisotropy. The morphology eventually evolves to a grain-like surface. Theroughening is dependent on both the group III and V flux, and the growthtemperature, indicating that this phenomenon is kinetically controlled by surfacediffusion activation. For each set of parameters chosen for the growth, there is aminimum temperature where smooth, two-dimensional growth can be obtained.Below that temperature the roughening shows two distinct power law regimesdependent on the epitaxial layer thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] - Kessler, D.A., Levine, H. and Sander, L.M., Phys.Rev.Lett. 69, 100 (1992)CrossRefGoogle Scholar
[2] - Hamm, R.A., Ritter, D., Temkin, H., Panish, M.B., Vandenberg, J.M. and Yadvish, R.D., Appl.Phys.Lett. 59, 1893 (1991)Google Scholar
[3] - Hata, M., Watanabe, A. and Isu, T., J.Cryst.Growth 111, 83 (1991)CrossRefGoogle Scholar
[4] - van Hove, J.M. and Cohen, P.l., J.Cryst.Growth 81, 13 (1991)CrossRefGoogle Scholar
[5] - Ghaisas, S.V. and Sarma, S. Das, Phys.Rev.B 46, 7308 (1992)Google Scholar
[6] - Ohta, K., Kojima, T. and Nakagawa, T., J.Cryst.Growth 95, 71 (1989)Google Scholar
[7] - Phaneuf, R.J., Williams, E.D. and Bartelt, N.C., Phys.Rev.B 38,1984 (1988)CrossRefGoogle Scholar
[8] - Cotta, M.A., Hamm, R.A., Staley, T.W., Yadvish, R.D., Harriott, L.R., and Temkin, H., Appl.Phys.Lett. 62, 496 (1993)Google Scholar
[9] - Tsang, W.T. and Cho, A.Y., Appl.Phys.Lett. 30, 293 (1977)CrossRefGoogle Scholar
[10] - Turco, F.S., Tamargo, M.C., Hwang, D.M., Nahory, R.E., Werner, J., Kash, K. and Kapon, E., Appl.Phys.Lett. 56, 72 (1990)Google Scholar