Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-20T14:24:44.907Z Has data issue: false hasContentIssue false

Examination of Gallium Arsenide Mocvd Reaction Mechanisms

Published online by Cambridge University Press:  15 February 2011

Robert S. Windeler
Affiliation:
University of California, Los Angeles, Department of Chemical Engineering, 5531 Boelter Hall, Los Angeles, CA 90024-1592
Robert F. Hicks
Affiliation:
University of California, Los Angeles, Department of Chemical Engineering, 5531 Boelter Hall, Los Angeles, CA 90024-1592
Get access

Abstract

A mathematical model has been developed of the reactor used by Larsen et al. [1] to study the kinetics of gallium arsenide MOCVD.- Two different surface reactions were considered as the rate-limiting step in film growth below 500°C: (1) the desorption of methyl radicals from adsorbed trimethylgallium, and (2) the reaction of CH3 and H groups from adsorbed trimethylgallium and arsine to make methane. The latter step is consistent with the experimental results. It explains the rapid acceleration of the precursor decomposition rates when they are fed together to the reactor. It also explains why methane is the only hydrocarbon generated from trimethylgallium and arsine decomposition in deuterium at V/Ill ratios greater than 1.0.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Larsen, C.A., Li, S.H., Buchan, N.I., Stringfellow, G.B., and Brown, D.W., J. Crystal Growth 102, 126 (1990).CrossRefGoogle Scholar
2. Stringfellow, G.B., Organometallic Vapor-Phase Epitaxv, Theory and Practice (Academic Press, San Diego, CA, 1989).Google Scholar
3. Reep, D.H. and Ghandhi, S.K., J. Electrochem. Soc. 130, 675 (1983).Google Scholar
4. Butler, J.E., Bottka, N., Sillmon, R.S., and Gaskill, D.K., J. Crystal Growth 77, 163 (1986).Google Scholar
5. Gaskill, D.K., Kolubayev, V., Bottka, N., Sillmon, R.S., and Butler, J.E., J. Crystal Growth 93, 127 (1988).CrossRefGoogle Scholar
6. DenBaars, S.P., Maa, B.Y., Dapkus, P.D., Danner, A.D., and Lee, H.C., J. Crystal Growth 77, 188 (1986).Google Scholar
7. Dapkus, P.D., DenBaars, S.P., Chen, Q., and Maa, B.Y., Prog. Crystal Growth and Charact. 19, 137 (1989).CrossRefGoogle Scholar
8. Kuech, T.F., Mater. Sci. Rep. 2, 1 (1987).CrossRefGoogle Scholar
9. Tirtowidjojo, M. and Pollard, R., J. Crystal Growth 92, 108 (1988).CrossRefGoogle Scholar
10. Nishizawa, J. and Kurabayashi, T., Vacuum 41, 319 (1990).Google Scholar
11. Mountziaris, T.J. and Jensen, K.F., J. Electrochem. Soc. 138, 2426 (1991).CrossRefGoogle Scholar
12. Lee, P.W., Omstead, T.R., McKenna, D.R., and Jensen, K.F., J. Crystal Growth 85, 165 (1987).Google Scholar
13. Creighton, J.R., Surf. Sci. 234 287 (1990).CrossRefGoogle Scholar
14. Creighton, J.R., J. Vac. Sci. Technol. A 9, 2895 (1991).Google Scholar
15. Creighton, J.R. and Banse, B.A., Mater. Res. Soc. Symp. Proc. 222, 15 (1991).Google Scholar
16. Donnelly, V.M. and McCaulley, J.A., Surf. Sci. 238, 34 (1990).CrossRefGoogle Scholar
17. McCaulley, J.A., Shul, R.J., and Donnelly, V.M., J. Vac. Sci. Technol. A 9, 2872 (1991).Google Scholar
18. Creighton, J.R., J. Vac. Sci. Technol. A 8, 3984 (1990).Google Scholar
19. Wolf, M., Zhu, X.Y., Huett, T., and White, J.M., Surf. Sci. 275, 41 (1992).Google Scholar
20. Cussler, E.L., Diffusion, Mass Transfer in Fluid Systems (Cambridge University Press, New York, 1984).Google Scholar
21. Jacob, M., Heat Transfer (Wiley, New York, 1949).Google Scholar
22. Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical Recipes (Cambridge University Press, New York, 1986.Google Scholar
23. Qi, H., Gee, P.E., and Hicks, R.F., unpublished results.Google Scholar
24. Tamaru, K., J. Phys. Chem. 59, 777 (1955).CrossRefGoogle Scholar
25. Kerr, J.A. and Parsonage, M.J., Evaluated Kinetic Data on Gas Phase Hydrogen Transfer Reactions of Methyl Radicals (Butterworths, London, 1976).Google Scholar
26. Kerr, J.A. and Moss, S.J., Handbook of Bimolecular and Termolecular Gas Reactions, Vol. 2 (CRC Press, Boca Raton, FL, 1981).Google Scholar
27. Tsang, W. and Hampson, R.F., J. Phys. Chem. Ref. Data 15 (1986); W. Tsang, J. Phys. Chem. Ref. Data, 17 (1988); W. Tsang, 19 (1990).CrossRefGoogle Scholar
28. Tanaka, H. and Komeno, J., Proc. Mat. Res. Soc. Symp. Proc. 94, 255 (1987).Google Scholar
29. Larsen, C.A., Buchan, N.I., Li, S.H., and Stringfellow, G.B., J. Crystal Growth 102, 103 (1990).Google Scholar
30. McDaniel, A.H., Liu, B., and Hicks, R.F., J. Crystal Growth 124, 676 (1992).CrossRefGoogle Scholar