Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-20T02:14:33.301Z Has data issue: false hasContentIssue false

Excimer Laser Induced Cryoetching of GaAs and Related Materials

Published online by Cambridge University Press:  25 February 2011

Michael B. Freiler
Affiliation:
Microelectronics Sciences Laboratories, Columbia University, New York, NY J0027
Ming Chang Shih
Affiliation:
Microelectronics Sciences Laboratories, Columbia University, New York, NY J0027
R. Scarmozzino
Affiliation:
Microelectronics Sciences Laboratories, Columbia University, New York, NY J0027
R. M. Osgood Jr
Affiliation:
Microelectronics Sciences Laboratories, Columbia University, New York, NY J0027
Ie Wei Tao
Affiliation:
Microelectronics Sciences Laboratories, Columbia University, New York, NY J0027
Wen I. Wang
Affiliation:
Microelectronics Sciences Laboratories, Columbia University, New York, NY J0027
Get access

Abstract

We report highly resolved, damage-free etching of GaAs and related materials. The etching is activated by excimer laser irradiation at 193 nm of samples maintained at low temperatures (∼140 K) in a chlorine atmosphere (∼5 mTorr). Since the etching is chemical in nature, structural damage to the substrate should not be present. Submicrometer resolution has been achieved by the use of electron beam lithography to pattern a Si3N4 contact mask. We have also successfully used our etching in the fabrication of a single-quantum-well, ridge-waveguide semiconductor laser.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sherer, A., Craighead, H. G., Roukes, M. L., and Harbison, J. P., J. Vac. Sci. Technol. B6, (1988).Google Scholar
2. Pang, S., Lincoln, G. A., McClelland, R. W., DeGraff, P. D., Geis, W. M., and Piacentini, W. J., J. Vac. Sci. Technol. B1, 1334 (1983).Google Scholar
3. Wong, H. F., Green, D. L., Liu, T. Y., Lishan, D. G., Bellis, M., Hu, E. L., Petroff, P. M., Holtz, P. O., and Mertz, J. M., J. Vac. Sci. Technol. B6, 1906 (1988).Google Scholar
4. Liberman, V., Haase, G., and Osgood, R. M. Jr, J. Chem. Phys. 96, 1590 (1992).CrossRefGoogle Scholar
5. Cousins, L. M. and Leone, S. R, Chem. Phys. Lett. 155, 162 (1989).Google Scholar
6. Freiler, M. B., Shih, Ming Chang, Haase, G., Scarmozzino, R., and Osgood, R. M. Jr, Mater. Res. Soc. Proc. 236, 15 (1991) andCrossRefGoogle Scholar
Shih, M. C., Freiler, M. B., Haase, G., Scarmozzino, R., and Osgood, R. M. Jr, Appl. Phys. Lett. 61, 828 (1992).Google Scholar
7. Tachi, S., Tsujimoto, K., and Okuddaira, S., Appl. Phys. Lett. 55, 91 (1989).Google Scholar
8. Watanabe, Heiji and Matsui, Sinji, Jpn. J. Appl. Phys. 31, L810 (1992).CrossRefGoogle Scholar