Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-23T07:15:50.490Z Has data issue: false hasContentIssue false

The Expected Environment for Waste Packages in a Salt Repository

Published online by Cambridge University Press:  25 February 2011

L. R. Pederson
Affiliation:
Pacific Northwest Laboratory, P. O. Box 999, Richland, WA, 99352
D. E. Clark
Affiliation:
Battelle Memorial Institute, Office of Nuclear Waste Isolation, 505 King Avenue, Columbus, OH 43201
F. N. Hodges
Affiliation:
Pacific Northwest Laboratory, P. O. Box 999, Richland, WA, 99352
G. L. Mcvpy
Affiliation:
Pacific Northwest Laboratory, P. O. Box 999, Richland, WA, 99352
D. Rai
Affiliation:
Pacific Northwest Laboratory, P. O. Box 999, Richland, WA, 99352
Get access

Abstract

This paper discusses results of recent efforts to define the very near-field (within approximately 2m) environmental conditions to which waste packages will be exposed in a salt repository. These conditions must be considered in the experimental design for waste package materials testing, which includes corrosion of barrier materials and leaching of waste forms. Site-specific brine compositions have been determined, and “standard” brine compositions have been selected for testing purposes. Actual brine compositions will vary depending on origin, temperature, irradiation history, and contact with irradiated rock salt. Results of irradiating rock salt, synthetic brines, rock salt/brine mixtures, and reactions of irradiated rock salt with brine solutions are reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Molecke, M.A., A Comparison of Brines Relevant to Nuclear Waste Experimentation (SAND83-0516, Sandia National Laboratories, Albuquerque, NM 87185, 1983).10.2172/6180854Google Scholar
2. Waste Package Reference Conceptual Designs for A Repository in Salt (ONWI-517, Westinghouse Electric Corporation, Waste Technology Services Division, Pittsburg, PA 15236, 1983).Google Scholar
3. Levy, P.W., Nucl. Tech. 60, 231 (1983).10.13182/NT83-A33078Google Scholar
4. Gray, W.J. in: Proceedings of the Second International Symposium on Ceramics in Nuclear Waste Management, Wicks, G. and Ross, W. eds. (in press 1983).Google Scholar
5. Komarneni, S., Freeborn, W.P., Scheetz, B.E., White, W.B. and McCarthy, G.J., Reaction and Devitrification of a Prototype Nuclear Waste Storage Glass with Hot Magnesium-Rich Brine (ONWI-305, Materials Research Laboratory, Pennsylvania State University, University Park, PA 16802, 1982).Google Scholar
6. Braithwaite, J.W. in: Scientific Basis for Nuclear Waste Management Vol. II, Northrup, C., ed. (Plenum Press, New York 1980) p. 199.10.1007/978-1-4684-3839-0_24CrossRefGoogle Scholar
7. Westik, J.H. Jr and Turcotte, R.P. in: Scientific Basis for Nuclear Waste Management Vol. 1, McCarthy, G., ed. (Plenum Press, New York 1979) p. 341.10.1007/978-1-4615-9107-8_41Google Scholar
8. Strachan, D.M., Nucl. Chem. Waste Management 4, 177 (1983).10.1016/0191-815X(83)90008-6CrossRefGoogle Scholar
9. Shade, J.W. and Bradley, D.J., Initial Waste Package Interaction Tests: Status Report (PNL-3559, Pacific Northwest Laboratory, Richland, WA 99352, 1981).Google Scholar
10. Shade, J.W., Pederson, L.R., and McVay, G.L. in: Proc. of the Second International Symposium on Ceramics in Nuclear Waste Management, Wicks, G. and Ross, W., eds. (in press 1983).Google Scholar
11. Marshall, W.L., Geochemica et Cosmochimica Acta 44, 907 (1980).10.1016/0016-7037(80)90280-XGoogle Scholar
12. Sonder, E. and Sibley, W.A. in: Point Defects in Solids, Crawford, J. and Slifkin, A., eds. (Plenum Press, New York 1971) p. 201.Google Scholar
13. Clark, C.D. and Crawford, J.H., Adv. Phys. 22, 117 (1973).10.1080/00018737300101279CrossRefGoogle Scholar
14. Hobbs, L.W., J. Physique Colloq. 34, C9 (1973).Google Scholar
15. Hobbs, L.W., Hughes, A. E., and Pooley, D., Proc. R. Soc. London A, 167 (1973).Google Scholar
16. Klaffky, R.W., Swyler, K. J., and Levy, P.W. in: Proc. of Conf. on Ceram. in Nucl. Waste Management, Chikalla, T. and Mendel, J., eds. (CONF-790430, U.S. Department of Energy, Washington, DC 1979) p. 310.Google Scholar
17. Levy, P.W., Swyler, K.J., and Klaffky, R.W., J. de Physique 41, Supplement Colloque 16, 344 (1980).Google Scholar
18. Levy, P.W., Loman, T.M., Swyler, K.T., and Klaffky, R.W., Radiation Damage Studies on Synthetic NaCl Crystals and Natural Rock Salt for Radioactive Waste Disposal Applications (BNL-29909, Brookhaven National Laboratory, Upton, NY 1982).Google Scholar
19. Levy, P.W. and Kierstead, T.A., Very Rough Preliminary Estimate of the Sodium Metal Colloid-Induced in Natural Rock Salt by the Radiations from Radioactive Waste Canister (BNL-32004, Brookhaven National Laboratory, Upton, NY 1982).Google Scholar
20. Jain, U. and Lidiard, A.B., Phil. Mag. 35, 245 (1977).10.1080/14786437708235986CrossRefGoogle Scholar
21. Panno, S.V., Chemical Changes in Radiation-Damaged Natural Rock Salt: Preliminary Results (BNL-NUREG-32523, Brookhaven National Laboratory, Upton, NY 1982).Google Scholar
22. Jenks, G.J., Sonder, E., Bopp, C.D., Walton, J.R., and Lindenbaum, S., J. Phys. Chem. 78, 871 (1975).10.1021/j100576a005CrossRefGoogle Scholar
23. Jenks, G.J. and Bopp, C.D., Storage and Release of Radiation Energy in Salt in Radioactive Waste Repositories (ORNL-5058, Oak Ridge National Laboratory, Oak Ridge, TN 1977).10.2172/5360969CrossRefGoogle Scholar
24. Draganic, I.V. and Draganic, Z.D., The Radiation Chemistry of Water (Academic Press, few York 1971).Google Scholar
25. Jenks, G.J., Radiolysis and Hydrolysis in Salt-Mine Brines (ORNL-TM-3717, Oak Ridge National Laboratory, Oak Ridge, TN 1972).10.2172/4657886Google Scholar
26. Pederson, L.R. and McVay, G.L., J. Am. Ceram. Soc. 66, 863 (1983).10.1111/j.1151-2916.1983.tb11002.xCrossRefGoogle Scholar
27. McVay, G.L. and Pederson, L.R., J. Am. Ceram Soc. 64 154 (1981).10.1111/j.1151-2916.1981.tb10248.xCrossRefGoogle Scholar
28. McVay, G.L., Weber, W.J., and Pederson, L.R., Nucl.and Chem. Waste Management 2, 103 (1981).10.1016/0191-815X(81)90024-3Google Scholar
29. Barkatt, Aa., Barkatt, Al., and Sousanpour, W., Nature 300, 339 (1982).10.1038/300339a0Google Scholar
30. Barkatt, Aa., Barkatt, Al., and Sousanpour, W., Nucl. Tech. 60, 218 (1982).10.13182/NT83-A33076Google Scholar
31. Pederson, L.R. and McVay, G.L. in: Proc. of the Second International Symposium on Ceramics in Nuclear Waste Management, Wicks, G. and Ross, W., eds. (in press 1983).Google Scholar
32. Anbar, M. in: Fundamental Processes in Radiation Chemistry, Ausloos, P., ed. (Interscience, New York 1968)p. 651.Google Scholar
33. Appleby, A. and Schwarz, H.A., J. Phys. Chem. 73, 1937 (1969).Google Scholar
34. Baas-Becking, L.G.M., Kaplan, I.R., and More, D., J. Geology 68, 243 (1960).10.1086/626659Google Scholar
35. Burns, W.G., Hughes, A.E., Marples, J.A.C., Nelson, R.S., and Stoneham, A.M., J. Nucl. Mat. 107, 245 (1982).10.1016/0022-3115(82)90424-XGoogle Scholar
36. Weber, W.J., Turcotte, R.P., Bunnell, L.R., Roberts, F.P., and Westsik, J.H. Jr. in: Ceramics in Nuclear Waste Management (CONF-790420, National Technical Information Service, Springfield, VA 1979)p. 294.Google Scholar
37. Scheffler, K. and Riege, U., Investigations on the Long-Term Radiation Stability of Borosilicate Glasses Against Alpha Emitters (KDK-2422, Kernforschungszentrum Karlsruhe, Karlsruhe, Germany FDR 1977).Google Scholar
38. Bibler, N.E. and Kelley, T.A., Effect of Internal Alpha Radiation on Borosilicate Glass Containing Savannah River Plant Waste (DP-1482, Savannah River Laboratory, Aiken SC 1978).10.2172/7044905Google Scholar