Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-20T06:27:25.142Z Has data issue: false hasContentIssue false

Experimental Analysis of the Adhesion of Copper and Chromium Films Deposited on a Polymer

Published online by Cambridge University Press:  15 February 2011

M. Ignat
Affiliation:
INPG BP 75 Domaine Universitaire 38402 Saint Martin D'Hères France.
L. Fayette
Affiliation:
INPG BP 75 Domaine Universitaire 38402 Saint Martin D'Hères France.
P. Normandon
Affiliation:
France Télécom BP 98 CNET 38243 Meylan France.
F. Templier
Affiliation:
France Télécom BP 98 CNET 38243 Meylan France.
J. Torres
Affiliation:
France Télécom BP 98 CNET 38243 Meylan France.
Get access

Abstract

An analysis of bulk and interfacial damage of film/substrate systems consisting of copper or chromium films deposited on a single polymer substrate, is presented here. For these systems (metal/single polymer substrate) the failure analysis is based on the experimental results obtained from deformation experiments performed in a scanning electron microscope. Critical parameters deduced from the experiments, and microstructural observations allow us to discuss the mechanical behaviour of these systems, and their interfacial adhesion properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pan, J., Poon, S., in Electronic Packaging Materials Science IV, edited by Jaccodine, R., Jackson, K.A., Lillie, E.D., Sundahl, R.C. (Mater. Res. Soc. Proc. 154 Pittsburgh, P.A 1989), p. 27.Google Scholar
2. Ignat, M., Arman, A., Moberg, L., Sibievde., F. Surf. Coat. Tech. 42, 514 (1991).CrossRefGoogle Scholar
3. Moberg, C., Arman, A.. Final Project (Dept. of Physical Metallurgy and Ceramics) Royal Institute of Technology Stockholm.April 1990.Google Scholar
4. Chow, T.S., Liu, C.A., Penwell, R.C.. J. Poly Sc. 14, 1305 (1976).Google Scholar
5. Penwell, R.C., Liang, K.S., T.S. Chow. Th. Sol. Filmls, 60, 133 (1979).Google Scholar
6. Ozenbas, M., Tan., C. J. Crys. Growth 78, 519 (1986).CrossRefGoogle Scholar
7. Doerner, M.F., Nix, W.D. CRC.R.Sol St. Mat.Sci. 14, 3, 225 (1988)Google Scholar
8. Faupel, F., Yang, C.H., Chen, S.T., P.S. Ho. J Appl. Phys. 65, 1911 (1989).Google Scholar
9. Kim, K.S., J. Kim. Trans. ASME 11.0, 266 (1988).Google Scholar
10. Kim, Y.H., Chavg, Y.S., Chou, N.J., J.Kim. J. Vac. Sci. Technol 5, 2890 (1987).CrossRefGoogle Scholar
11. Chen, S.T., Yang, C.H., Faupel, F., Ho, P.S.. J.Appl. Phys. 64 (1988).Google Scholar
12. Chow, T.S. J. appl. Phys. 46, 219 (1975).Google Scholar
13. Davutoglu, A., Aksay, J.A., in Surfaces and Interfaces (Edited by the University of California, Berkeley, 1980) PP 6471 Google Scholar
14. Barenblatl, G.I.. Adv.appl.Mech., 7 55 (1962).Google Scholar
15. Klokholm, E., IBM J. Res Develop. 31, 586 (1987).CrossRefGoogle Scholar