Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-08T13:18:44.589Z Has data issue: false hasContentIssue false

Experimental and Computational Studies of Ion-Solid Interactions in Silicon Carbide

Published online by Cambridge University Press:  01 February 2011

William J. Weber
Affiliation:
Fundamental Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A.
Fei Gao
Affiliation:
Fundamental Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A.
Ram Devanathan
Affiliation:
Fundamental Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A.
Weilin Jiang
Affiliation:
Fundamental Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A.
Yanwen Zhang
Affiliation:
Fundamental Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A.
Get access

Abstract

Experimental and computational results on ion-beam-induced defect production, damage accumulation, and thermal recovery in SiC are reviewed. The accumulation and recovery of disorder on the Si and C sublattices have been determined experimentally by ion-channeling methods. Atomic-level simulations are used to determine defect production, cascade-overlap effects, and defect migration energies. Energetic Si and C collision cascades, with energies up to 50 keV, primarily produce single interstitials, mono-vacancies, antisite defects, and small defect clusters. Overlapping of Si and C cascades results in the interaction of defects and clusters that stimulates cluster growth and produces long-range structural disorder. For energetic Au cascades, nanoscale amorphous clusters are produced directly within about 25% of the Au cascades, along with point defects and smaller clusters. The disordering behavior and the changes in volume and elastic modulus obtained experimentally and from molecular dynamics simulations are in good agreement, thus providing atomic-level interpretation of experimentally observed features. Simulations of close-pair production and recombination in SiC indicate that the activation energies for recombination of most close pairs range from 0.24 to 0.38 eV. Multiaxial channeling measurements indicate annealing below 300 K results in relaxation of some interstitials to lower-energy configurations. Long-range migration energies for interstitials and vacancies have likewise been determined by computational methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Palmour, J. W., Edmond, J. A., Kong, H. S., and Carter, C. H. Jr, Physica B 185, 461 (1993).Google Scholar
2. Casady, J. B. and Johnson, R. W., Solid-State Electron. 39, 1409 (1996).Google Scholar
3. Raynaud, C., J. Non-Cryst. Sol. 280, 1 (2001).Google Scholar
4. Wesch, W., Nucl. Instrum. Meth. B116, 305 (1996).Google Scholar
5. Choyke, W. J. and Pensl, G., MRS Bulletin 22, 25 (1997).Google Scholar
6. Cooper, J. A. Jr, Melloch, M. R., Woodall, J. M., Spitz, J., Schoen, K. J., and Henning, J. P., Mater. Sci. Forum 264–268, 895 (1998).Google Scholar
7. Capano, M. A. and Trew, R. J., MRS Bull. 22, 19 (1997).Google Scholar
8. Giancarli, L., Bonal, J. P., Caso, A., Le Morois, G., Moorley, N. B., and Salavy, J. F., Fusion Eng. Des. 41, 165 (1998).Google Scholar
9. Kim, B. G., Choi, Y., Lee, J. W., Sohn, D. S., and Kim, G. M., J. Nucl. Mater. 281, 163 (2000).Google Scholar
10. Gao, F. and Bacon, D. J., Philos. Mag. A 71, 43 (1995).Google Scholar
11. Gao, F. and Weber, W. J., J. Appl. Phys. 89, 4275 (2001).Google Scholar
12. Gao, F., Weber, W. J. and Jiang, W., Phys. Rev. B 63, 214106 (2001).Google Scholar
13. Rubia, T. Diaz de la and Guinan, M. W., J. Nucl. Mater. 174, 151 (1990).Google Scholar
14. Devanathan, R., Weber, W. J. and Rubia, T. Diaz de la, Nucl. Instrum. Meth. B 141, 118 (1998).Google Scholar
15. Gao, F. and Weber, W. J., Phys. Rev. B 63, 054101 (2000).Google Scholar
16. Devanathan, R., Weber, W. J. and Gao, F., J. Appl. Phys. 90, 2303 (2001).Google Scholar
17. Nordlund, K., Runenberg, N. and Sundholm, D., Nucl. Instrum. Meth. B 132, 45 (1997).Google Scholar
18. Biersack, J. P. and Ziegler, J. F., Nucl. Instrum. Meth. B 141, 93 (1982).Google Scholar
19. Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
21. Devanathan, R. and Weber, W. J., J. Nucl. Mater. 278, 258 (2000).Google Scholar
22. Gao, F. and Weber, W. J., Phys. Rev. B 66, 024106 (2002).Google Scholar
23. Parrinello, M. and Rahman, A., J. Appl. Phys. 52, 7182 (1981).Google Scholar
24. Gao, F. and Weber, W. J., Nucl. Instrum. Meth. B 191, 504 (2002).Google Scholar
25. Yu.N., Osetsky, Mikhin, A. G. and Serra, A., Philos. Mag. A 72, 361 (1995).Google Scholar
26. Sorensen, M. R., Jacobsen, K. W. and Jónsson, H., Phys. Rev. Lett. 77, 5067 (1996).Google Scholar
27. Gao, F. and Weber, W. J., Appl. Phys. Lett. 82, 913 (2003).Google Scholar
28. Weber, W. J., Gao, F., Devanathan, R. and Jiang, W., Nucl Instrum. Meth. B (2004) in press.Google Scholar
29. Jiang, W. and Weber, W. J., Phys. Rev. B 64, 125206 (2001).Google Scholar
30. Jiang, W., Weber, W. J., Thevuthasan, S. and Shutthanandan, V., J. Nucl. Mater. 289, 96 (2001).Google Scholar
31. Gao, F. and Weber, W. J., J. Appl. Phys. 94, 4348 (2003).Google Scholar
32. Weber, W. J., Gao, F., Devanathan, R., Jiang, W. and Wang, C. M., Nucl. Instrum. Meth. B (2004) in press.Google Scholar
33. Gao, F. and Weber, W. J., J. Mater. Res. 17, 259 (2002).Google Scholar
34. Gao, F. and Weber, W. J., J. Mater. Res. 18, 1877 (2003).Google Scholar
35. Weber, W. J., Gao, F., Jiang, W., and Zhang, Y., Nucl. Instrum. Meth. B 206, 1 (2003).Google Scholar
36. Weber, W. J., Yu, N. and Wang, L. M., J. Nucl. Mater. 253, 53 (1998).Google Scholar
37. Hearmon, F. R. S., An Introduction to Applied Anisotropic Elasticity (Oxford University Press, London, 1961).Google Scholar
38. Weber, W. J., Wang, L. M., Yu, N. and Hess, N. J., Mater. Sci. and Eng. A253, 62 (1998).Google Scholar
39. Gao, F., Bylaska, E. J., Weber, W. J. and Corrales, L. R., Phys. Rev. B 64, 245208 (2001).Google Scholar
40. Weber, W. J., Jiang, W. and Thevuthasan, S., Nucl. Instrum. Meth. B 175–177, 26 (2001).Google Scholar
41. Gao, F., Weber, W. J., Posselt, M. and Belko, V., Phys. Rev. B (2004) in press.Google Scholar