Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T11:53:56.790Z Has data issue: false hasContentIssue false

Fabrication of Multi-Level Buried Oxide Layers by Oxygen-Ion-Implantation into Si/Ge multilayers

Published online by Cambridge University Press:  03 September 2012

Toshio Ogino
Affiliation:
NTT Basic Research Laboratories, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-01, Japan, ogino@will.brl.ntt.co.jp
Yoshihiro Kobayashi
Affiliation:
NTT Basic Research Laboratories, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-01, Japan, ogino@will.brl.ntt.co.jp
Kuniyil Prabhakaran
Affiliation:
NTT Basic Research Laboratories, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-01, Japan, ogino@will.brl.ntt.co.jp
Koji sumitomo
Affiliation:
NTT Basic Research Laboratories, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-01, Japan, ogino@will.brl.ntt.co.jp
Get access

Abstract

We propose a novel technique based on preferential oxidation of Si in the Si/Ge system. Oxygen ions were implanted at 30 keV into Si/Ge multilayers while the substrate temperature was kept below 100°C. Significant oxygen concentration was then observed at the Si/Ge interfaces and at a thin Si layer embedded into the Ge layer. When the samples were then annealed above 400°c, the bonding state of the Si oxide approached that of SiO2. During this process, Ge atoms were expelled from the oxide layers. Transmission electron microscopy confirmed that silicon dioxide layers were formed. This new technique can be used to form semiconductor/insulator multilayered structures from Si/Ge multilayers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. König, U., Microelectronic Engineering, 23, p. 3 (1994).Google Scholar
2. Patton, G. L., Comfort, J. H., Meyerson, B. S., Crabbe, E. F., Scilla, G. J., Frésart, E. D., Stork, J. M. C., Sun, J. Y. -C., Harame, D. L., and Burghartz, J. N., IEEE Electron Device Lett., 11, p. 171 (1990).Google Scholar
3. Sato, F., Tatsumi, T., Hashimoto, T., and Tashiro, T., Trans. Electron Devices, 41, p. 1373 (1994).Google Scholar
4. Ismail, K., Arafa, M., Saenger, K. L., Chu, J. O., and Meyerson, B. S., Appl. Phys. Lett., 66, p. 1077 (1995).Google Scholar
5. Ismail, K., Chu, J. O., and Meyerson, B. S., Appl. Phys. Lett., 64, p. 3124 (1994).Google Scholar
6. Pearsall, T. P., Bevk, J., Feldman, L. C., Bonar, J. M., Mannaerts, J. P., and Ourmazd, A., Phys. Rev. Lett., 58, p. 729 (1987).Google Scholar
7. Terashima, K., Tajima, M., Ikarashi, N., Niino, T., and Tatsumi, T., Jpn. J. Appl. Phys., 30, p. 3601 (1991).Google Scholar
8. Fukatsu, S., Yoshida, H., Fujisawa, A., Takahashi, Y., Shiraki, Y., and Ito, R., Appl. Phys. Lett., 61, p. 804 (1992).Google Scholar
9. Sturm, J. C., Manoharan, H., Lenchyshyn, L. C., Thewalt, M. L. W., Rowell, N. L., Nöel, J. -P., and Houghton, D. C., Phys. Rev. Lett., 66, p. 1362 (1991).Google Scholar
10. LeGoues, F. K., Rosenberg, R., and Meyerson, B. S., Appl. Phys. Lett., 54, p. 644 (1989).Google Scholar
11. Patton, G. L., Iyer, S. S., Delage, S. L., Ganin, E., and McIntosh, R. C. in Epitaxy of Semiconductor Layered Structures, edited by Tung, R. T., Dawson, L. R., and Gunshor, R. L. (Mater. Res. Soc. Proc. 102, Pittsburgh, PA, 1988) pp. 295299.Google Scholar
12. Liou, H. K., Mei, P., Gennser, U., and Yang, E. S., Appl. Phys. Lett., 59, p. 1200 (1991).Google Scholar
13. Izumi, K., Doken, M., and Ariyoshi, H., Electron. Lett., 14, p. 593 (1978).Google Scholar
14. Castle, J. E., Liu, H. D., Watts, J. F., Hemment, P. L. F., Zhang, J. P., Newstead, S. M., Powell, A. R., Whall, T. E., and Parker, E. H. C., Mater. Sci. Eng., B 12, p. 199 (1992).Google Scholar
15. Lockwood, D. J., Lu, Z. H., and Baribeau, J. -M., Phys. Rev. Lett., 76, p. 539 (1996).Google Scholar
16. Dutta, A. K., Appl. Phys. Lett., 68, p. 1189 (1996).Google Scholar
17. Seabaugh, A. C., Cho, C. -C., Steinhoff, R. M., Moise, T. S., Tang, S.., Wallace, R. M., Beam, E. A., Kao, Y. -C., Bowen, R. C., Frensley, W. R., Park, K. H., and Pkuno, Y., 2nd Int. Workshop on Quantum Functional Devices, Matsue, Japan, Extended Abstracts, p. 32 (1995).Google Scholar
18. Boishin, G., Tyuliev, G., and Surnev, L., Surf. Sci., 303, p. 333 (1994).Google Scholar
19. Prabhakaran, K., Nishioka, T., Sumitomo, K., Kobayashi, Y., and Ogino, T., Appl. Phys. Lett., 62, p. 864 (1993).Google Scholar
20. Prabhakaran, K., Ogino, T., Scimeca, T., Watanabe, Y., and Oshima, M., Appl. Phys. Lett., 64, p. 1839 (1994).Google Scholar
21. Prabhakaran, K., Nishioka, T., Kobayashi, Y., and Ogino, T., Appl. Surf. Sci., 75, p. 341 (1994).Google Scholar
22. Sumitomo, K., Kobayashi, Y., Prabhakaran, K., and Ogino, T., unpublished.Google Scholar