Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-17T23:16:43.226Z Has data issue: false hasContentIssue false

Fabrication of p-Type Zns with Blue-Ag Emission by Triple-Codoping Method

Published online by Cambridge University Press:  01 February 2011

S. Kishimoto
Affiliation:
Kochi National College of Technology, Monobe-otsu 200-1, Nankoku, Kochi 783-8508, Japan
T. Yamamoto
Affiliation:
Department of Electronic and Photonic Systems Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada-cho, Kami-gun, Kochi 782-8502, Japan
S. Iida
Affiliation:
Department of Electrical Engineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-2188, Japan
Get access

Abstract

We have succeeded in the fabrication of low-resistivity p-type ZnS with blue -Ag emission by triple-codoping using Ag, a Zn-substituting species, In, a Zn-substituting species, and N, a S-substituting species. For the realization of blue-Ag emission at 436 nm, we use In species as co-activators with Ag activators. For the control of conduction type to obtain p-type ZnS thin films, we introduce N species as acceptors into ZnS codoped with the Ag and In. On the basis of the analysis of the experimental data and calculated results, we proposed a model for ZnS:(Ag, In, and N), in which some of the In species act as coactivators with Ag activators and other In species act as reactive codopants with N acceptors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Era, K., Shionoya, S., and Washizawa, Y., J. Phys. Chem. Solids 29, 1827 (1968)Google Scholar
2. Era, K., Shionoya, S., Washizawa, Y., and Ohmatsu, H., J. Phys. Chem. Solids 29, 1843(1968).Google Scholar
3. Svob, L, Thiandoume, C, Lusson, A, Bouanani, M., Marfaing, Y., and Gorochov, O., Appl. Phys. Lett. 76, 1695 (2000)Google Scholar
4. Yamamoto, T. and Katayama-Yoshida, H., Jpn. J. Appl. Phys. 38, L166 (1999).Google Scholar
5. Yamamoto, T. and Katayama-Yoshida, H., Jpn. J. Appl. Phys. 36, L180 (1997).Google Scholar
6. Joseph, M., Tabata, H. and Kawai, T., Jpn. J. Appl. Phys. 38, L1205 (1999).Google Scholar
7. Korotkov, R. Y., Gregie, J. M., and Wessels, B. W., Appl. Phys. Lett. 78, 222 (2001)Google Scholar
8. Kishimoto, S., Hasegawa, T., Kinto, H., Matsumoto, O., Iida, S., J. Crystal Growth 214/215, 556 (2000)Google Scholar
9. Kishimoto, S., Kato, A., Naito, A., Sakamoto, Y. and Iida, S., physica status solidi (b) 229, 391 (2002)Google Scholar
10. Yamamoto, T., Kishimoto, S. and Iida, S., Physica B: Condensed Matter, 308-310, 916 (2001)Google Scholar
11. Yamamoto, T., Kishimoto, S. and Iida, S., physica status solidi (b) 229, 371 (2002)Google Scholar
12. Iida, S., Yatabe, T. and Kinto, H., Jpn. J. Appl. Phys., Part 2 28, L535 (1989).Google Scholar
13. Iida, S., Yatabe, T., Kinto, H. and Shinohara, M., J. Crystal Growth 101, 141 (1990)Google Scholar
14. Kohn, W. and Sham, L. J., Phys. Rev., 140, A1133 (1965).Google Scholar
15. Hedin, L. and Lundquist, B. I., J. Phys., C4, 3107 (1971)Google Scholar
16. Barth, U. von and Hedin, L., J. Phys., C5, 1629 (1972)Google Scholar
17. Williams, A. R., Kübler, J. and Gelatt, C. D., Phys. Rev., B19, 6094 (1979)Google Scholar
18. Kohiki, S., Suzuka, T., Oku, M., Yamamoto, T., Kishimoto, S. and Iida, S., J. Appl. Phys., 91, 760 (2002)Google Scholar
19. Kishmoto, S., Dr. Thesis, Dept. of Electrical Engineering, Nagaoka University of Technology, Niigata, 2001.Google Scholar