Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-23T13:24:02.588Z Has data issue: false hasContentIssue false

Fatigue of Intermetallic Compounds

Published online by Cambridge University Press:  28 February 2011

N.S. Stoloff
Affiliation:
Materials Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA
G.E. Fuchs
Affiliation:
Materials Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA
A.K. Kuruvilla
Affiliation:
Materials Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA
S.J. Choe
Affiliation:
Materials Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA
Get access

Abstract

The fatigue behavior of intermetallic compounds is reviewed. The effects of long range order, stoichiometry, test temperature and test environment on crack initiations high cycle fatigue lives and crack growth rates are emphasized. In the case of Ni3Al+B stoichiometry affects high cycle lives largely through the influence of aluminum on ductility and notch sensitivity. High cycle fatigue behavior of Fe3Al is dependent upon stoichiometry and temperature in a complex way which is connected with the formation of superlattice dislocations and with phase changes during high temperature exposure. Oxygen and hydrogen are shown to be detrimental to high cycle fatigue and crack growth in several compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Boettner, R.C., Stoloff, N.S. and Davies, R.G., Trans. AIME, 236, 131 (1966).Google Scholar
2. Rudolph, G., Haasen, P., Mordike, B.L. and Neumann, P., Proc. First Int. Conf. on Fracture, Sendai, Japan, 2, 501 (1965).Google Scholar
3. Gittins, A., Met. Sci. J, 2, T14 (1968).Google Scholar
4. Whitehead, R.S. and Noble, F.W., J. Mat. Sci. 5, 851 (1970).CrossRefGoogle Scholar
5. Ashok, S., Kain, K., Tartaglia, J. and Stoloff, N.S., Met. Trans. A, 14A, 1997 (1983).Google Scholar
6. Clark, H. Mcl., Nature, 209, 193 (1966).Google Scholar
7. S.Sastry, M.L. and Lipsitt, H.A., Acta. Met. 25, 1279 (1977).Google Scholar
8. Doherty, J.E., Giamei, A.F. and Kear, B.H., Met. Trans. A, 6A, 2195 (1975).CrossRefGoogle Scholar
9. Fuchs, G.E., Kuruvilla, A.K. and Stoloff, N.S., submitted to Met. Trans. A (1986).Google Scholar
10. Choe, S.J., Fuchs, G.E. and Stoloff, N.S., RPI, unpublished.Google Scholar
11. Liu, C.T. and White, C.L., Abstract, p. 14, J. of Metals, 37, Nov. (1985).Google Scholar
12. Inouye, H., in High Temperature Ordered Intermetallic Alloys, MRS Symposia 39, Materials Res. Soc., Pittsburgh, PA, 22 (1985).Google Scholar
13. Choe, S.J. and Stoloff, N.S., Rensselaer Polytechnic Inst., Troy, NY unpublished (1986).Google Scholar
14. Williams, H.D. and Smith, G.C., Phil. Mag. 13, 835 (1966).CrossRefGoogle Scholar
15. Kuruvilla, A.K. and Stoloff, N.S., Met. Trans. A, 16A, 815 (1985).Google Scholar
16. Kuruvilla, A.K. and Stoloff, N.S., Proc. 7th Int. Conf. on Strength of Metals and Alloys, Montreal, Canada 2, 1335 (1985).Google Scholar
17. Paris, P. and Erdogan, F., J. Basic Eng., Trans. ASME, Series D, 85, 528 (1963).CrossRefGoogle Scholar
18. McEvily, A.J. Jr., and Johnston, T.L., Intl. J. Fract. Mech. 3, 45 (1967).Google Scholar
19. Burck, L.H. and Weertman, J., Met. Trans. A, 7, 257 (1976).CrossRefGoogle Scholar
20. Chang, K.M., Huang, S.C. and Taub, A.I., General Electric Co., Rept. 86CRD202, Oct. (1986).Google Scholar
21. Chien, K.H. and Starke, E.A. Jr., Acta. Met. 23, 1173 (1975).Google Scholar
22. Pak, H-R., Hsiung, L-M and Kato, M., in High Temperature Ordered Intermetallic Alloys, MRS Symposia 39, Materials Res. Soc., Pittsburgh, PA, 239 (1985).Google Scholar
23. Ezz, S.S. and Pope, D.P., Scripta Met. 19, 741 (1985).CrossRefGoogle Scholar
24. Ezz, S.S., Pope, D.P. and Paidar, V., Acta. Met. 30, 921 (1982).CrossRefGoogle Scholar
25. Jablonski, D. and Sargent, S., Scripta Met., 15, 1003 (1981).Google Scholar
26. Taub, A.I., Huang, S.C. and Chang, K.M. in High Temperature Ordered Intermetallic Alloys, MRS Symposia 39, MRS, Pittsburgh, PA 221 (1985).Google Scholar
27. Kuruvilla, A.K. and Stoloff, N.S., Scripta Met. 19, 229 (1985).Google Scholar
28. Kuruvilla, A.K. and Stoloff, N.S., in High Temperature Ordered Intermetallic Alloys, MRS Symposia 39, Materials Res. Soc., Pittsburgh, PA, 229 (1985).Google Scholar
29. Takasugi, T. and Izumi, O., Acta. Met. 34, 168 (1986).CrossRefGoogle Scholar
30. Stoloff, N.S. and Davies, R.G., Trans. ASM 57, 247 (1964).Google Scholar
31. Stoloff, N.S. and Davies, R.G., Prog. Mat. Sci., 13, no. 1, 1 (1966).Google Scholar
32. Dannemann, K.A., Stoloff, N.S. and Duquette, D.J. in Deformation of Multiphase and Particle Containing Materials, Proc. 4th RISO Symp., 205 (1983).Google Scholar
33. Fuchs, G.E., PhD Thesis, Rensselaer Polytechnic Institute (1986).Google Scholar
34. Sastry, S.M.L. and Lipsitt, H.A., Met. Trans. A, 8A, 299 (1977).Google Scholar
35. Aerospace Structural Materials Handbook.Google Scholar
36. Venkataraman, S., Nicholas, T. and Zawada, L.P., Abstracts, ASM Materials Week '86, Orlando, FL, 25 (1986).Google Scholar