Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-18T14:17:53.751Z Has data issue: false hasContentIssue false

Femtosecond Carrier Dynamics in Semiconductors and Metals

Published online by Cambridge University Press:  26 February 2011

Wei Zhu Lin
Affiliation:
Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139
Robert W. Schoenlein
Affiliation:
Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139
Stuart D. Brorson
Affiliation:
Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139
Erich P. Ippen
Affiliation:
Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139
James G. Fujimoto
Affiliation:
Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

We describe investigations of carrier dynamics in GaAs and AlGaAs semiconductors and thin gold films using femtosecond optical techniques. Transient absorption saturation measurements in semiconductors permit an investigation of the fundamental scattering processes of optically excited carriers. Measurements of energy relaxation provide evidence for transient nonthermal carrier distributions. Studies in metals allow an investigation of nonequilibrium electron and phonon effects since the electrons are decoupled from the lattice on a femtosecond time scale. Nonequilbrium temperatures and energy transport in the electron gas have been observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lyon, S. A., J. of Luminescence 35, 121 (1986).Google Scholar
2. Shank, C.V., Fork, R.L., Leheny, R.F., and Shah, J., Phys. Rev. Lett. 42, 112 (1979).Google Scholar
3. Leheny, R.F., Shah, J., Fork, R.L., Shank, C.V., and Migus, A., Solid State Commun. 31, 809 (1979).Google Scholar
4. Tang, C.L. and Erskine, D.J., Phys. Rev. Lett. 51, 840 (1983).Google Scholar
5. Erskine, D.J., Taylor, A.J. and Tang, C.L., Appl. Phys. Lett. 45, 54 (1984).Google Scholar
6. Taylor, A.J., Erskine, D.J. and, Tang, C.L., J. Opt. Soc. Am. B 2, 663 (1985).Google Scholar
7. Lin, W.Z., Fujimoto, J.G., Ippen, E.P., and Logan, R.A., Proceedings of the International Conference on Lasers '86, Orlando, FL, Society for Opticaland Quantum Electronics, McLean, VA (1986).Google Scholar
8. Lin, W.Z., Fujimoto, J.G., Ippen, E.P., and Logan, R.A., Appl. Phys. Lett. 50, 124 (1987).Google Scholar
9. Lin, W.Z., Fujimoto, J.G., Ippen, E.P., and Logan, R.A., Appl. Phys. Lett. 51, 161 (1987).Google Scholar
10. Oudar, J.L., Hulin, D., Migus, A., Antonettti, A., and Alexandre, F., Phys. Rev. Lett. 55, 2074 (1985).Google Scholar
11. Brito-Cruz, C.H., Fork, R.L., and Shank, C.V., IQEC '87 Technical Digest, Baltimore, MD, April 26-May 1, 1987, pp. 82–83.Google Scholar
12. Schoenlein, R. W., Lin, W. Z., Ippen, E. P., and Fujimoto, J. G., Appl. Phys. Lett. 51, 1442 (1987).Google Scholar
13. Valdmanis, J.A., Fork, R.L., and Gordon, J.P., Opt. Lett. 10, 131 (1985).Google Scholar
14. Fork, R.L., Martinez, O.E., and Gordon, J.P., Opt. Lett. 9, 150 (1984).Google Scholar
15. Tsang, J.C. and Kash, J.A., Phys. Rev. B 34, 6003 (1986).Google Scholar
16. Knox, W.H., Downer, M.C., Fork, R.L., and Shank, C.V., Opt. Lett. 9, 552 (1984).Google Scholar
17. Wise, F.W., Walmsley, I.A., and Tang, C.L. Appl. Phys. Lett. 51, 605 (1987).Google Scholar
18. Anisimov, S.I., Kapeliovich, B.L., and Perelman, T.L., Zh. Eksp. Teor. Fiz 66, 776 (1974) [Soy. Phys. JETP 39, 375 (1975)].Google Scholar
19. Yen, R., Liu, J., and Bloembergen, N., Opt. Commun. 35, 277 (1980).Google Scholar
20. Yen, R., Liu, J.M., Bloembergen, N., Yee, T.K., Fujimoto, J.G., and Salour, M.M., Appl. Phys. Lett. 40, 185 (1982).Google Scholar
21. Eesley, G.L., Phys. Rev. Lett. 51, 2140 (1983).Google Scholar
22. Eesley, G.L., Phys. Rev. B 33, 2144 (1986).Google Scholar
23. Fujimoto, J.G., Liu, J.M., Ippen, E.P., and Bloembergen, N., Phys. Rev. Lett. 53) 1837 (1984).Google Scholar
24. Schoenlein, R.W., Lin, W.Z., Fujimoto, J.G., and Eesley, G.L., Phys. Rev. Lett. 58, 1680 (1987).Google Scholar
25. Elsayed-Ali, H.E., Norris, T.B., Pessot, M.A., and Mourou, G.A., Phys. Rev. Lett. 58, 1212 (1987).Google Scholar
26. Brorson, S.D., Fujimoto, J.G., and Ippen, E.P., Phys. Rev. Lett. 59, 1962 (1987).Google Scholar
27. Cardona, M., Modulation Spectroscopy, Academic Press, New York, 1969 Google Scholar
28. Rosei, R. and Lynch, D.W., Phys. Rev. B 5, 3883 (1972).Google Scholar
29. Scouler, W.J., Phys. Rev. Lett. 18, 445 (1967).Google Scholar
30. Rosei, R., Antonangeli, F., and Grassano, U.M., Surface Science 37, 689 (1973).Google Scholar
31. Krolikowski, W.F. and Spicer, W.E., Phys. Rev. B 1, 478 (1970).Google Scholar
32. Relevant parameters taken from Ashcroft, N.W. and Mermin, N.D., Solid State Physics, Saunders College, Philadelphia, 1976.Google Scholar
33. Sze, S.M., Moll, J.L., and Sugano, T., Solid State Electron. 7, 509 (1964).Google Scholar
34. Crowell, C.R., Spitzer, W.G., Howarth, L.E., and LaBate, E.E., Phys. Rev. 127, 2006 (1962).Google Scholar