Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-01T04:27:04.815Z Has data issue: false hasContentIssue false

Field Emission from Carbon Films Deposited by Controlled-Low-Energy Beams and CVD Sources

Published online by Cambridge University Press:  10 February 2011

Douglas H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6056
Vladimir I. Merkulov
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6056
L. R. Baylor
Affiliation:
Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–8071
G. E. Jellison Jr.
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6056
D. B. Poker
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6056
S. Kim
Affiliation:
SKION Corporation, 50 Harrison St., Hoboken, NJ 07030
M. H. Sohn
Affiliation:
SKION Corporation, 50 Harrison St., Hoboken, NJ 07030
N. W. Paik
Affiliation:
Physics and Engineering Physics Dept., Stevens Institute of Technology, Hoboken, NJ 07030
Get access

Abstract

The principal interests in this work are energetic-beam control of carbon-film properties and the roles of doping and surface morphology in field emission. Carbon films with variable sp3-bonding fraction were deposited on n-type Si substrates by ArF (193 nm) pulsed-laser ablation (PLA) of a pyrolytic graphite target, and by direct metal ion beam deposition (DMIBD) using a primary Cs+ beam to generate the secondary C- deposition beam. The PLA films are undoped while the DMIBD films are doped with Cs. The kinetic energy (KE) of the incident C atoms/ions was controlled and varied over the range from ∼25 eV to ∼175 eV. Earlier studies have shown that C films' sp3-bonding fraction and diamond-like properties can be maximized by using KE values near 90 eV. The films' surface morphology, sp3–bonding fraction, and Cs-content were determined as a function of KE using atomic force microscopy, TEM/EELS, Rutherford backscattering and nuclear reaction measurements, respectively. Field emission (FE) from these very smooth undoped and Cs-containing films is compared with the FE from two types of deliberately nanostructured carbon films, namely hot-filament chemical vapor deposition (HF-CVD) carbon and carbon nanotubes grown by plasma-enhanced CVD. Electron field emission (FE) characteristics were measured using ∼25-μm, ∼5-μm and ∼1-μm diameter probes that were scanned with ∼75 nm resolution in the x-, y-, and z-directions in a vacuum chamber (∼5 × 10-7 torr base pressure) equipped with a video camera for viewing. The hydrogen-free and very smooth a-D or a-C films (with high or low sp3 content, and with or without ∼1% Cs doping) produced by PLD and DMIBD are not good field emitters. Conditioning accompanied by arcing was required to obtain emission, so that their subsequent FE is characteristic of the arc-produced damage site. However, deliberate surface texturing can eliminate the need for conditioning, apparently by geometrical enhancement of the local electric field. But the most promising approach for producing macroscopically flat FE cathodes is to use materials that are highly nanostructured, either by the deposition process (e.g. HF-CVD carbon) or intrinsically (e.g. carbon nanotubes). HF-CVD films were found to combine a number of desirable properties for FE displays and vacuum microelectronics, including the absence of conditioning, low turn-on fields, high emission site density, and apparent stability and durability during limited long-term testing. Preliminary FE measurements revealed that vertically aligned carbon nanotubes are equally promising.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See for example Jung, J. H., Ju, B. K., Lee, Y. H., Jang, J., and Oh, M. H., IEEE Elec. Dev. Lett. 18, 197(1999).Google Scholar
2. See for example A. A. G. Driskill-Smith, Hasko, D. G., and Ahmed, H., Appi. Phys. Lett. 75, (1999).Google Scholar
3. Spindt, C. A., Brodie, I., Humphrey, L., and Westerberg, E. R., J. Appl. Phys. 47, 5248(1976).Google Scholar
4. Himpsel, F. J., Knapp, J. A., Van Vechten, J. A., and Eastman, D. E., Phys. Rev. B 20, 624(1979).Google Scholar
5. J. Van der Weide, and Nemanich, R. J., Appl. Phys. Left. 62, 1878(1993).Google Scholar
6. de Heer, W. A., Chatelain, A., and Ugarte, D., Science 270, 1179(1995).Google Scholar
7. Zhou, D., Krauss, A. R., Corrigan, T. D., McCauley, T. G., Chang, R. P. H., and Gruen, D. M., J. Electrochem. Soc. 144, 224(1997).Google Scholar
8. Zhu, W., Kochanski, G. P., and Jin, S., Science 282, 1471(1998).Google Scholar
9. Coll, B. F., Jaskie, J. E., Markham, J. L., Menu, E. P., Talin, A. A., and von Allmen, P., p. 185 in Covalently-Bonded Disordered Thin-Film Materials, ed. by Siegal, M. P., Milne, W., and Jaskie, J. E., Materials Research Society, Warrendale, PA, 1998.Google Scholar
10. Merkulov, V. I., Lowndes, D. H., and Baylor, L. R., Appl. Phys. Lett. 75, 1228(1999).Google Scholar
11. Robertson, J., J. Vac. Sci. Technol. B 17, 659(1999).Google Scholar
12. Chuang, F. Y., Sun, C. Y., Chen, T. T., and Lin, I. N., Appl. Phys. Lett. 69, 3504(1996).Google Scholar
13. 0. Groning, 0. Kuttel, M., Groning, P., and Schlapbach, L., Appl. Surf Sci. 111, 135(1997).Google Scholar
14. Karabutov, A. V., Konov, V. I., Ralchenko, V. G., Obraztsova, E. D., Frolov, V. D., Uglov, S. A., Scheibe, H.-J., Strelnitskij, V. E., and Polyakov, V. I., Diamond and Related Mater. 7, 802(1998).Google Scholar
15. Park, C., Park, H., Y.-K. Hong Kim, J. S., and Kim, J. K., Appl. Surf Sci. 111, 140(1997).Google Scholar
16. Jung, J. H., Ju, B. K., Lee, Y. H., Jang, J., and f-t, M.. Oh, IEEE Elec. Dev. Lett. 18, 197(1997).Google Scholar
17. Litovchenko, V. G., Evtukh, A. A., Marchenko, R. I., Klyui, N. I., and Semenovich, V. A.,. Appl. Surf Sci. 111,213 (1997).Google Scholar
18. Xu, N. S., She, J. C., Huq, S. E., Chen, J., and Deng, S. Z., Appl. Phys. Lett. 73, 3668(1998).Google Scholar
19. She, J. C., Huq, S. E., Chen, J., Deng, S. Z., and Xu, N. S., J. Vac. Sci. Technol. B 17, 592(1999).Google Scholar
20. Park, Y., Ko, Y. W., Sohn, M. H., and Kim, S. I., Mater. Res. Soc. Symp. Proc. 396, 623(1996).Google Scholar
21. Kim, S. I., Rev. Sci. Instr. 67, 908(1996).Google Scholar
22. Sohn, M. H., Y. 0. Ahn, Ko, Y. W., Hah, S. R., Fischer, T. E., and Kim, S. I., J. Vac. Sci Technol. A 16, 3554(1998).Google Scholar
23. Ko, Y. W. and Kim, S. I., J. Vac. Sci. Technol. A 15, 2750(1997).Google Scholar
24. Bozeman, S. P., Camphausen, S. M., Cuomo, J. J., Kim, S. I., Y. 0. Ahn, and Ko, Y., J. Vac. Sci. Technol. A 15, 1729(1997).Google Scholar
25. V. 1. Merkulov, Lowndes, D. H., Wei, Y. Y., and Eres, G., “Patterned growth of individual and multiple vertically-aligned carbon nanotubes,” submitted to Applied Physics Letters. Google Scholar
26. Lowndes, D. H., Merkulov, V. I., Puretzky, A. A., Geohegan, D. B., Jellison, G. E., Jr., Rouleau, X. M., and Thundat, T., Mat. Res. Soc. Symp. Proc. 526, 325(1998).Google Scholar
27. Lowndes, D. H., Merkulov, V. I., Pedraza, A. J., Fowlkes, J. D., Puretzky, A. A., Geohegan, D. B., and Jellison, G. E., Jr., Symposium on Surface Engineering: Science and Technology I. Proc. of TMS 1999 Annual Meeting, 1999 (in press).Google Scholar
28. Merkulov, V. I., Lowndes, D. H., Jellison, G. E., Jr., Puretzky, A. A., and Geohegan, D. B., Appl. Phys. Lett. 73, 2591(1998).Google Scholar
29. Puretzky, A. A. et al., Appl. Surf Sci. 96–98, 859 (1996).Google Scholar
30. Geohegan, D. B. and Puretzky, A. A., Mat. Res. Soc. Symp. Proc. 397, 55(1996).Google Scholar
31. This method of producing a C- beam was developed by SKION Corp. and has been used to produce negative-ion beams of several metals.Google Scholar
32. Forrest, R. D., Burden, A. P., Silva, S. R. P., Cheah, L. K., and Shi, X., Appl. Phys. Lett. 73, 3784(1998).Google Scholar
33. Ko, Y. W. and Kim, S. I., J Vac. Sci. Technol. A 15, 2750(1997).Google Scholar
34. Merkulov, V. I., Lowndes, D. H., and Baylor, L. R., Appl. Phys. Lett. 75, 1228(1999).Google Scholar
35. Gohl, A., Alimova, A. N., Habermann, T., Mescheryakova, A. L., Nau, D., Zhirnov, V. V., and Muller, G., J. Vac. Sci. Technol. B 17, 670(1999).Google Scholar
36. Merkulov, V. I., Lowndes, D. H., and Baylor, L. R., “Field emission and nanostructure of carbon films,” submitted to Amorphous and Nanostructured Carbon, Symposium U of the Fall, 1999 MRS meeting, Boston, MA (in press).Google Scholar
37. Fowler, R. H. and Nordheim, L. W., Proc. Roy. Soc. London, Ser. A 119, 173(1928).Google Scholar
38. Further information can be obtained from SKION Corp.Google Scholar