Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-15T21:02:56.301Z Has data issue: false hasContentIssue false

First Principles Study of Hydrogen Adsorption and Diffusion on Transition Metal Surfaces: Application to the Ru (0001) Surface

Published online by Cambridge University Press:  28 February 2011

James R. Chelikowsky-al
Affiliation:
Department of Chemical Engineering and Materials Science, Supercomputer Institute, University of Minnesota, Minneapolis, MN 55455
M.-Y. Chou
Affiliation:
Corporate Research Science Laboratories, Exxon Research and Engineering Company, Annandale, NJ 08801
Get access

Abstract

Hydrogen adsorption and diffusion on the (0001) surface of ruthenium is investigated using ab initio pseudopotentials within the local density approximation. The adsorption energies at a number of different sites and bond lengths were investigated via total energy calculations. Using these calculated values a potential surface was constructed and an estimate for the activation barrier for hydrogen diffusion was obtained. The calculated value of 4.0 kcal is in good accord with the value of ≈ 4 kcal as determined from laser-induced thermal desorption experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Storch, H.H., Golumbic, N. and Anderson, R.B., The Fisher-Tropsch and Related Synthesis, (Wiley, New York, 1951).Google Scholar
2. Chelikowsky, J.R., Chan, C.T. and Louie, S.G., Phys. Rev. B 34, 6656 (1986).CrossRefGoogle Scholar
3. Chou, M.Y. and Chelikowsky, J.R., Phys. Rev. B 35, 2124 (1987).CrossRefGoogle Scholar
4. Chou, M.Y. and Chelikowsky, J.R., Phys. Rev. Lett. 59, 1737 (1987) and Phys. Rev. B (submitted).CrossRefGoogle Scholar
5. Feulner, P. and Menzel, D., Surf. Sci. 154, 465 (1985).CrossRefGoogle Scholar
6. Yates, J.T. Jr., Peden, C.H.F., Houston, J.E. and Goodman, D.W., Surf. Sci. 160, 37 (1985).CrossRefGoogle Scholar
7. Barteau, M.A., Broughton, J.Q. and Menzel, D., Surf. Sci. 133, 443 (1983).CrossRefGoogle Scholar
8. Conrad, H., Scala, R., Stenzel, W. and Unwin, R., J. Chem. Phys. 81, 6371 (1984).CrossRefGoogle Scholar
9. Hofmann, P. and Menzel, D., Surf. Sci. 152/153, 382 (1985).CrossRefGoogle Scholar
10. Mark, C.H., Brand, J.L., Deckert, A.A. and George, S.M., J. Chem. Phys. 85, 1676 (1986)Google Scholar
11. Mark, C.H., J.L. Brand, Koehler, B.G. and George, S.M., Surf. Sci. 188, 312 (1987).Google Scholar
12. Mark, C.H., Brand, J.L., Koehler, B.G. and George, S.M., Surf. Sci. 191, 108 (1987).Google Scholar
13. Shimizu, H., Christmann, K. and Ertl, G., J. Catalysis 61, 412 (1980).CrossRefGoogle Scholar
14. Feulner, P., Pfnür, H., Hofmann, P. and Menzel, D., Surf. Sci. 173, L576 (1986).CrossRefGoogle Scholar
15. Lindroos, M., Pfnür, H., Feulner, P. and Menzel, D., Surf. Sci. 180, 237 (1987).CrossRefGoogle Scholar
16. Lindroos, M., Pfnür, H. and Menzel, D., Surf. Sci. 192, 421 (1987).CrossRefGoogle Scholar
17. Hamann, D.R., Schlüter, M. and Chiang, C., Phys. Rev. Lett. 43, 1494 (1979).CrossRefGoogle Scholar
18. Chan, C.T., Vanderbilt, D. and Louie, S.G., Phys. Rev. B 33, 2455 (1986).CrossRefGoogle Scholar
19. Lauderdale, J.G. and Truhlar, D.G., Surf. Sci. 164, 558 (1985) and references therein.CrossRefGoogle Scholar