Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-19T20:29:15.587Z Has data issue: false hasContentIssue false

First-principles transition state study of oxygen reduction reaction on Pt (111) surface modified by subsurface transition metals

Published online by Cambridge University Press:  06 March 2012

Zhiyao Duan
Affiliation:
Department of Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A.
Aditi Datta
Affiliation:
Department of Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A.
Guofeng Wang
Affiliation:
Department of Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A.
Get access

Abstract

We have performed first-principles density functional theory calculations to investigate how subsurface 3d transition metals M (M = Ni, Co, Fe, Ti, or V) affect the energetics and mechanisms of oxygen reduction reaction (ORR) on the outermost Pt mono-surface layer of Pt/M (111) surfaces. We found that the alteration of the ORR mechanism pathway can explain the activity enhancement for ORR on the Pt/M (111) surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jacobson, M. Z., Colella, W. G. and Golden, D. M., Science 308, 1901 (2005).Google Scholar
2. Markovic, N. M. and Ross, P. N., Surf. Sci. Rep. 45, 117 (2002).Google Scholar
3. Bashyam, R. and Zelenay, P., Nature 443, 63 (2006).Google Scholar
4. Bezerra, C. W., Zhang, L., Lee, K., Liu, H., Marques, A. L., Marques, E. P., Wang, H. and Zhang, J., Electrochim. Acta 53, 4937 (2008).Google Scholar
5. Gong, K., Du, F., Xia, Z., Durstock, M. and Dai, L., Science 323, 760 (2009).Google Scholar
6. Bing, Y., Liu, H., Zhang, L., Ghosh, D. and Zhang, J., Chem. Soc. Rev. 39, 2184 (2010).Google Scholar
7. Stamenkovic, V., Mun, B. S., Mayrhofer, K. J. J., Ross, P. N., Markovic, N. M., Rossmeisl, J., Greeley, J. and Nørskov, J. K., Angew. Chem., Int. Ed. 45, 2897 (2006).Google Scholar
8. Greeley, J., Stephens, I. E. L., Bondarenko, S. A., Johansson, T. P., Hansen, H. A., Jaramillo, T. F., Rossmeisl, J., Chorkendorff, I. and Nørskov, J. K., Nat. Chem. 1, 552 (2009).Google Scholar
9. Adzic, R. R., Zhang, J., Sasaki, K., Vukmirovic, M. B., Shao, M., Wang, J. X., Nilekar, A. U., Mavrikakis, M., Valerio, J. A. and Uribe, F., Top. Catal. 46, 249 (2007).Google Scholar
10. Zhang, J., Mo, Y., Vukmirovic, M. B., Klie, R., Sasaki, K. and Adzic, R. R., J. Phys. Chem. B 108, 10955 (2004).Google Scholar
11. Stamenkovic, V. R., Fowler, B., Mun, B. S., Wang, G., Ross, P. N., Lucas, C. A. and Markovic, N. M., Science 315, 493 (2007).Google Scholar
12. Stamenkovic, V. R., Mun, B. S., Arenz, M., Mayrhofer, K. J. J., Lucas, C. A., Wang, G., Ross, P. N. and Markovic, N. M., Nat. Mater. 6, 241 (2007).Google Scholar
13. Hammer, B., Nørskov, J. K. and Gates, H. K. B. C., Impact of Surface Science on Catalysis, (Academic Press, 2000) vol. 45, pp. 71129.Google Scholar
14. Kresse, G. and Hafner, J., Phys. Rev. B: Condens. Matter 47, 558 (1993).Google Scholar
15. Kresse, G. and Furthmüller, J., Comput. Mater. Sci. 6, 15 (1996).Google Scholar
16. Kresse, G. and Joubert, D., Phys. Rev. B: Condens. Matter 59, 1758 (1999).Google Scholar
17. Perdew, J. P. and Wang, Y., Phys. Rev. B: Condens. Matter 45, 13244 (1992).Google Scholar
18. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B: Solid State 13, 5188 (1976).Google Scholar
19. Henkelman, G., Uberuaga, B. P. and Jónsson, H., J. Chem. Phys. 113, 9901 (2000).Google Scholar
20. Duan, Z. and Wang, G.F., Phys. Chem. Chem. Phys. 13, 20178 (2011).Google Scholar
21. Brønsted, J. N., Chem. Rev. 5, 231338 (1928).Google Scholar
22. Evans, M. G. and Polanyi, M., Trans. Faraday Soc. 34, 1124 (1938).Google Scholar