Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T13:25:53.011Z Has data issue: false hasContentIssue false

Fluorine-Silicon Reactions and the Etching of Crystalline Silicon

Published online by Cambridge University Press:  28 February 2011

Chris G. Van De Walle
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY 10598
F. R. Mcfeely
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY 10598
S. T. Pantelides
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

The interaction between F atoms and crystalline Si, which is essential for etching processes in semiconductor device fabrication, is investigated with state-of-the-art theoretical techniques. The theory is based on the pseudopotential-density-functional method in a supercell geometry. A comprehensive picture of F reactions with the Si surface, the bulk, and the near-surface region is obtained, in terms of which the etching process is elucidated. Insertion of F into Si-Si bonds becomes possible because of relaxed steric constraints in the near-surface region. Dependence of the etch rate on doping follows naturally, in agreement with observations. Similarities and differences between F-Si and H-Si reactions are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Winters, H. F. and Cobourn, J., Appl. Phys. Lett. 34, 70 (1979); Winters, H. F. and F. A. Houle, J. Appl. Phys. 54, 1218 (1983); F. A. Houle, J. Chem. Phys. 80, 4851 (1984).Google Scholar
2 McFeely, R., Morar, J. F., and Himpsel, F. J., Surf. Sci. 165, 277 (1986).Google Scholar
3 Seel, M. and Bagus, P. S., Phys. Rev. B 28, 2023 (1983); P. S. Bagus, in Materials Research Society Symposium Proceedings, Vol. 38, p. 179 (1985); B. J. Garrison and W.A. Goddard III, Phys. Rev. B 36, 9805 (1987).CrossRefGoogle Scholar
4 Walle, C. G. Van de, McFeely, F. R., and Pantelides, S. T., Phys. Rev. Lett. 61, 1867 (1988).CrossRefGoogle Scholar
5 Walle, C. G. Van de, Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. Lett. 60, 2761 (1988).Google Scholar
6 Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, ibid. 140, A1133 (1965); exchange and correlation potentials are based on the data from D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980), as parametrized by J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).Google Scholar
7D. Hamann, R., Schlfiter, M., and Chiang, C., Phys. Rev. Lett. 43, 1494 (1979).Google Scholar
8Following the methodology of Bar-Yam, Y. and Joannopoulos, J. D., Phys. Rev. B 30, 1844 (1984).Google Scholar
9The approach is the same as that followed for oxygen by Bar-Yam, Y., Pantelides, S. T., and Joannopoulos, J. D. (to be published).Google Scholar
10 Lwdin, P. O., J. Chem. Phys. 19, 1396 (1951).Google Scholar
11 Walsh, R., Acc. Chem. Res. 14, 246 (1981).CrossRefGoogle Scholar
12 Keating, P. N., Phys. Rev. 145, 637 (1966); G. A. Baraff, E. 0. Kane, and M. Schliiter, Phys. Rev. B 21,Google Scholar
13 Winters, H. F. and Haarer, D., Phys. Rev. B. 36, 6613 (1987).Google Scholar
14 Yarmoff, J. A. and McFeely, F. R., Phys. Rev. B 38, 2057 (1988).Google Scholar
15 Mogab, C. J. and Levinstein, H. J., J. Vac. Sci. Technol. 17, 721 (1980); L. Baldi D. Beardo, J. Appl. Phys. 57, 2221 (1985); J. Electrochem. Soc. 133, 2202 (1986).CrossRefGoogle Scholar
16 Ibbotson, D. E., Flamm, D. L., Mucha, J. A., and Donnelly, V. M., Appl. Phys. Lett. 44, 1129 (1984).Google Scholar