Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-29T14:21:15.408Z Has data issue: false hasContentIssue false

Formation Chemistry of Polycrystalline Cu(InGa)Se2 Thin-Film Absorbers Prepared by Selenization of Cu-Ga/In Stacked Precursor Layers with H2Se Gas

Published online by Cambridge University Press:  10 February 2011

K. Kushiya
Affiliation:
Showa Shell Sekiyu K.K., Central R&D Lab. 123-1 Shimo-Kawairi, Atsugi City, Kanagawa Pref. 243-02 Japan
S. Kuriyagawa
Affiliation:
Showa Shell Sekiyu K.K., Central R&D Lab. 123-1 Shimo-Kawairi, Atsugi City, Kanagawa Pref. 243-02 Japan
T. Kase
Affiliation:
Showa Shell Sekiyu K.K., Central R&D Lab. 123-1 Shimo-Kawairi, Atsugi City, Kanagawa Pref. 243-02 Japan
I. Sugiyama
Affiliation:
Showa Shell Sekiyu K.K., Central R&D Lab. 123-1 Shimo-Kawairi, Atsugi City, Kanagawa Pref. 243-02 Japan
M. Tachiyuki
Affiliation:
Showa Shell Sekiyu K.K., Central R&D Lab. 123-1 Shimo-Kawairi, Atsugi City, Kanagawa Pref. 243-02 Japan
H. Takeshita
Affiliation:
Showa Shell Sekiyu K.K., Central R&D Lab. 123-1 Shimo-Kawairi, Atsugi City, Kanagawa Pref. 243-02 Japan
Get access

Abstract

The purpose of this study is to improve the reliability and reproducibility of our fabrication process for polycrystalline Cu(InGa)Se2 (CIGS) thin-film absorbers and to make a better absorber with higher efficiency. The current baseline process of selenization has been evaluated through the investigation of the formation chemistry of the device-quality CIGS thin-film absorbers with a graded band-gap structure. It has been verified that the current selenization process has been performed in a good balancing point with both Cu/III ratio and thickness of the precursor layer and the total amount of Se through H2Se gas incorporated from the surface during the selenization. A simplified model to explain the formation chemistry of the selenization in this study has been proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Contreras, M.A., Tuttle, J., Gabor, A., Tennant, A., Ramanathan, K., Asher, S., Franz, A., Wang, J., and Noufi, R., Proc. 1st World Conference on Photovoltaic Energy Conversion (1994) p.68.Google Scholar
2. Hedström, J., Ohlsön, H., Bodegård, M., Kylner, A., Stolt, L., Hariskos, D., Ruckh, M. and Schock, H.W., Proc. 23rd IEEE Photovoltaics Specialists Conference (1993) p. 364.Google Scholar
3. Gay, R., Dietrich, M., Fredric, C., Jensen, C., Knapp, K., Tarrant, D. and Willett, D., Proc. 12th EC Photovoltaic Solar Energy Conference (1994) p. 935.Google Scholar
4. Chen, W.S., Stewart, J.W., Devaney, W.E., Mickelsen, R.A. and Stanbery, B.J., Proc. 23rd IEEE Photovoltaics Specialists Conference (1993) p. 422.Google Scholar
5. Kohara, K., Nishitani, M., Negami, T., Terauchi, M., Ikeda, M. and Wada, T., Proc. 13th EC Photovoltaic Solar Energy Conference (1995) p.2084.Google Scholar
6. Kushiya, K., Kuriyagawa, S., Nii, T., Sigiyama, I., Kase, T., Sato, M. and Takeshita, H., Proc. 13th EC Photovoltaic Solar Energy Conference (1995) p. 2016.Google Scholar
7. Kushiya, K., Shimizu, A., Saito, K., Yamada, A. and Konagai, M., Proc. 1st World Conference on Photovoltaic Energy Conversion (1994) p. 87.Google Scholar
8. Tuttle, J.R., Contreras, M., Tennant, A., Albin, D. and Noufi, R., Proc. 23rd IEEE Photovoltaics Specialists Conference (1993) p.415.Google Scholar
9. Jensen, C.L., Tarrant, D.E., Ermer, J.H. and Pollock, G.A., Proc. 23rd IEEE Photovoltaics Specialists Conference (1993) p.577.Google Scholar
10. Zweigart, S., Walter, T., Köble, C., Sun, S.M., Rühle, U. and Schock, H.W., Proc. 1st World Conference on Photovoltaic Energy Conversion (1994) p.60.Google Scholar
11. Verma, S., Varrin, R.D. Jr, Birkmire, R.W. and Russell, T W F., Proc. 22nd IEEE Photovoltaics Specialists Conference (1991) p. 914.Google Scholar