Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-20T14:27:06.715Z Has data issue: false hasContentIssue false

Formation of Amorphous and Nanocrystalline Phases in Mechanically Alloyed Zr-, Al-, and Mg-Base Transition Metal Alloys

Published online by Cambridge University Press:  15 February 2011

M. Seidel
Affiliation:
Institut für Festkörper- und Werkstofforschung Dresden, Postfach, D-01171 Dresden, Germany
J. Eckert
Affiliation:
Institut für Festkörper- und Werkstofforschung Dresden, Postfach, D-01171 Dresden, Germany
H.-D. Bauer
Affiliation:
Institut für Festkörper- und Werkstofforschung Dresden, Postfach, D-01171 Dresden, Germany
L. Schultz
Affiliation:
Institut für Festkörper- und Werkstofforschung Dresden, Postfach, D-01171 Dresden, Germany
Get access

Abstract

Zr-, Al-, and Mg-base transition metal alloys have been prepared by mechanical alloying and investigated by x-ray diffraction, differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). Amorphous phases with significant supercooled liquid region form directly during milling from the crystalline starting materials for Zr- and Mg-base alloys. For Albase alloys the formation of mixtures of amorphous and nanocrystalline phases is observed. The results are compared with data for melt-spun and quenched materials. Possible mechanisms for glass formation and crystallization are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Inoue, A., Zhang, T. and Masumoto, T., J. Non-Cryst. Solids 156–158, 473 (1993).Google Scholar
2. Masumoto, T., Mater. Sci. Eng. A179/A180, 8 (1994).Google Scholar
3. Inoue, A., Matsumoto, N. and Masumoto, T., Mater. Trans. JIM 31, 493 (1990).Google Scholar
4. Peker, A. and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
5. Zhang, T., Inoue, A. and Masumoto, T., Mater. Trans. JIM 32, 1005 (1991).Google Scholar
6. Zhang, T., Inoue, A. and Masumoto, T., Mater. Sci. Eng. A181/A182, 1423 (1994).Google Scholar
7. Koch, C.C., Cavin, O.B., McKamey, C.G. and Scarbrough, J.O., Appl. Phys. Lett. 43, 1017 (1983).Google Scholar
8. Seidel, M., Eckert, J. and Schultz, L. (submitted to Appl. Phys. Lett.; submitted to Mater. Lett.).Google Scholar
9. Kim, Y.-H., Inoue, A. and Masumoto, T., Mater. Trans. JIM 32, 599 (1991).Google Scholar
10. Seidel, M. and Eckert, J. (unpublished results).Google Scholar
11. Kim, S. G., Inoue, A. and Masumoto, T., Mater. Trans. JIM 31, 929 (1990).Google Scholar
12. Eckert, J., Schultz, L. and Urban, K., Z. Metallkde. 81, 862 (1990).Google Scholar
13. Dougherty, G.M., Shiflet, G.J. and Poon, S.J., Acta Metall. Mater. 42, 2275 (1993).Google Scholar
14. Eckert, J., Schultz, L. and Urban, K., J. Non-Cryst. Solids 130, 273 (1991).Google Scholar