Hostname: page-component-6d856f89d9-mhpxw Total loading time: 0 Render date: 2024-07-16T06:11:39.839Z Has data issue: false hasContentIssue false

Formation of artificially-Layered Thin-Film Compounds Using Pulsed-Laser Deposition

Published online by Cambridge University Press:  21 February 2011

David P. Norton
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056
B. C. Chakoumakos
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056
D. H. Lowndes
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056
J. D. Budai
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056
Get access

Abstract

Superlattice structures, consisting of SrCuO2, (Sr,Ca)CuO2, and BaCuO2 layers in the tetragonal, "infinite layer" crystal structure, have been grown by pulsed-laser deposition (PLD). Superlattice chemical modulation is observed for structures with component layers as thin as a single unit cell (~3.4 Å), indicating that unit-cell control of (Sr,Ca)CuO2 growth is possible using conventional pulsed-laser deposition over a wide oxygen pressure regime. X-ray diffraction intensity oscillations, due to the finite thickness of the film, indicate that these films are extremely flat with a thickness variation of only ~20 Å over a length scale of several thousand angstroms. Using the constraint of epitaxy to grow metastable cuprates in the infinite layer structure, novel high-temperature superconducting structural families have been formed. IN particular, epitaxially-stabilized SrCuO2/BaCuO2 superlattices, grown by sequentially depositing on lattice-matched (100) SrTiO3 from BaCuO2 and SrCuO2 ablation targets in a PLD system, show metallic conductivity and superconductivity at Tc(onset) ~70 K. these results show that pulsed-laser deposition and epitaxial stabilization have been used to effectively "engineer" artificially-layered thin-film materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bednorz, J. G. and Muller, K. A., Z. Phys. B, Cond. Matter. 64, 189 (1986).Google Scholar
2 Vanderah, T. A., Chemistry of Superconductor Materials, (Noyes Publications, Park Ridge, N.J., 1992).Google Scholar
3 Schilling, A., Cantoni, M., Guo, J. D., Ott, H. R., Nature 363, 56 (1993).Google Scholar
4 Ihara, H. et al. , Jpn. J. appl. Phys. 33, L503 (1994).Google Scholar
5 Jin, C. -Q., Adachi, S., Wu, X.-J., Yamauchi, H., Tanaka, S., Physica C 223, 238 (1994).Google Scholar
6 Alario-Franco, M. A., Chaillout, C., Capponi, J. J., Thoulence, J.-L., Souletie, B., Physica C 222, 52 (1994).Google Scholar
7 Hiroi, Z., Takano, M., Azuma, M., Takeda, Y., Nature 364, 315 (1993).Google Scholar
8 Eckstein, J. N. et al. , Appl. Phys. Lett. 57, 931 (1990).Google Scholar
9 Terashima, T. et al. , Phys. Rev. Lett. 60, 3045 (1992).Google Scholar
10 Chern, M. Y., A. Gupta, Hussey, B. W., Appl. Phys. Lett. 60, 3045 (1992).Google Scholar
11 Norton, D. P., Chakoumakos, B. C., Budai, J. D., Lowndes, D. H., Appl. Phys. Lett. 62, 1679 (1993).Google Scholar
12 Niu, C. and Lieber, C. M., J. am. Chem. Soc. 114, 3570 (1992).Google Scholar
13 Yoshimoto, M., Nagata, H., Gong, J., Ohkubo, H., Koinuma, H., Physica C 185, 2085 (1991).Google Scholar
14 Kanai, M., Kawai, T., Kawai, S., Appl. Phys. Lett. 58, 771 (1991).Google Scholar
15 Siegrist, T., Zahurak, S. M., Murphy, D. W., Roth, R. S., Nature 334, 231 (1988).Google Scholar
16 Smith, M. G., Manthiram, A., Zhou, J., Goodenough, J. B., and Markert, J. J., Nature 351, 549 (1991).Google Scholar
17 Er, G., Miyamoto, Y., Kanamaru, F., and Kikkawa, S., Physica C 181, 206 (1991).Google Scholar
18 Takano, M., Azuma, M., Hiroi, Z., Bando, Y., and Takeda, Y., Physica C 176, 441 (1991).Google Scholar
19 Hiroi, Z., Takano, M., Azuma, M., Takeda, Y., and Bando, Y., Physica C 185189, 523 (1991).Google Scholar
20 Azuma, M., Hiroi, Z., Takano, M., Bando, Y., and Takeda, Y., Nature 356, 775 (1992).Google Scholar
21 Takano, M., Takeda, Y., Okada, H., Miyamoto, M., and Kusaka, K., Physica C 159, 375 (1989).Google Scholar
22 Li, X., Kanai, M., Kawai, T., and Kawai, S., Jpn. J. appl. Phys. 31, L217 (1992).Google Scholar
23 Li, X., Kawai, T., and Kawai, S., Jpn. J. appl. Phys. 31, L934 (1992).Google Scholar
24 Norton, D. P., Chakoumakos, B. C., Jones, E. C., Christen, D. K., and Lowndes, D. H., Physica C 217, 146 (1993).Google Scholar
25 Norton, D. P., Budai, J. D., Lowndes, D. H., and Chakoumakos, B. C., Appl. Phys. Lett. 65, 2869 (1994).Google Scholar