Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-28T08:28:59.440Z Has data issue: false hasContentIssue false

Formation of Device Quality Si/SiO2 Interfaces in a Multichamber Integrated Processing System

Published online by Cambridge University Press:  25 February 2011

S.S. Kim
Affiliation:
North Carolina State University, Dept. of Physics, Raleigh, NC 27695
D.V. Tsu
Affiliation:
North Carolina State University, Dept. of Physics, Raleigh, NC 27695
G. Lucovsky
Affiliation:
North Carolina State University, Dept. of Physics, Raleigh, NC 27695
G.G. Fountain
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709
R.J. Markunas
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709
Get access

Abstract

This paper describes the key process steps in the low temperature, <300ºC, formation of device quality Si/SiO2 interfaces employing oxide deposition by Remote Plasma-Enhanced Chemical Vapor-Deposition (Remote PECVD). The quality of the Si/SiO2 interface correlates with the degree of surface reconstruction that is controlled by ex-situ wet cleaning and in-situ Rapid Flash Heating. Electronic properties of the MOS structure also vary with the deposited oxide thickness, independent of the initial surface quality.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Adams, A.C., Solid State Technology 26, 135 1983.Google Scholar
2. Gorowitz, B., Gorczyca, T.B., and Saia, R.J., Solid State Tecnol. 28(6), 197 (1985).Google Scholar
3. Wieder, H.H., AIP Conf. Proc. 138 (AVS Series 1), 230 (1986).Google Scholar
4. Fountain, G.G., Hattangady, S.V., Rudder, R.A., Markunas, R.J., Lucovsky, G. Kim, S.S., and Tsu, D.V., J. Vac. Sci. Technol. A7 (1989).Google Scholar
5. Tsu, D.V., Parsons, G.N. and Lucovsky, G., J. Vac. Sci. Technol. A6, 1849 1988.Google Scholar
6. Kim, S.S., Tsu, D.V. and Lucovsky, G., J. Vac. Sci. Technol. A6, 1740 1988.Google Scholar
7. Lucovsky, G. and Tsu, D.V., J. Non-Crrvst. Solids 97&98, 265 1987.CrossRefGoogle Scholar
8. Lucovsky, G. and Tsu, D.V., J. Vac. Sci. Technol. A5, 2231 1987.Google Scholar
9. Lucovsky, G., Tsu, D.V., Fitch, J.T. and Kim, S.S., J. Vac. Sci. Technol. A7, (1989)Google Scholar
10. Batey, J. and Tierney, E., J. Appl. Phys. 60, 3136 1986.Google Scholar
11. Tsu, D.V., Parsons, G.N., Lucovsky, G. and Watkins, M.W., J. Vac. Sci. Technol. A7, (1989)Google Scholar
12. Kim, S.S., Parsons, G.N., Tsu, D.V. and Lucovsky, G., IEEE Trans. Electron Devices (1989) in press.Google Scholar
13. Kim, S.S. and Lucovsky, G., to be published.Google Scholar
14. Lucovsky, G., Kim, S.S., Tsu, D.V., Fountain, G.G. and Markunas, R.J., J. Vac. Sci. Technol. B7, (1989), in press.Google Scholar
15. Parsons, G.N., Kim, S.S., and Lucovsky, G., to be published in these MRS Sympo. Proc.Google Scholar
16. Wager, J.F. and Wilmsen, C.W. in Physics and Chemistry of III-V Compound Semiconductor Interfaces, (Plenum Press, New York, 1985), Chapter 3 (page 165).Google Scholar
17. Vitavage, D.J., Fountain, G.G., Rudder, R.A., Hattangady, S.V., and Markunas, R.J., Appl. Phys. Lett. 53(8), 692 (1988).Google Scholar
18. Fountain, G.G., Rudder, R.A., Hattangady, S.V., Markunas, R.J., and Lindorme, P.S., J. Appl. Phys. 63, 4744(1988).Google Scholar