Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-13T04:43:13.102Z Has data issue: false hasContentIssue false

Formation of Microporous Films via Pattern Photo-Polymerization Induced Phase Separation

Published online by Cambridge University Press:  15 March 2011

Scott Meng
Affiliation:
Institute of Polymer EngineeringThe University of Akron, Akron, OH 44325
Domasius Nwabunma
Affiliation:
Institute of Polymer EngineeringThe University of Akron, Akron, OH 44325
Thein Kyu*
Affiliation:
Institute of Polymer EngineeringThe University of Akron, Akron, OH 44325
*
Corresponding author: tkyu@uakron.edu CC6.6.1
Get access

Extract

We describe a method of fabricating microporous films through pattern photopolymerization induced phase separation in a mixture of solvent/monomer using multi-wave mixing, i.e., four-wave mixing through interference of two horizontal and two vertical waves. The simulation on the microporous forming process was undertaken in the framework of the time-dependent Ginzburg-Landau (TDGL) Model B equations coupled with the reaction kinetic equation of photopolymerization. In the total free energy description, Flory-Huggins free energy of mixing was combined with the elastic free energy of the network. The calculated results showed that the microporous size, shape, and spacing of the micropores depend on the angle of interference and the reaction rate controlled by the incident UV intensity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Wang, H., Huang, H., Wunder, S.L., J. Electrochem. Soc., 147, 2853 (2001).Google Scholar
2. Mehta, R.H., Madsen, D.A., Kalika, D.S., J. Membrane Sci., 107(1-2), 93 (1995).Google Scholar
3. Atkins, T.W., Biomaterials, 18(2), 173 (1997).Google Scholar
4. Mendelsohn, J. D., Barrett, C. J., Chan, V. V., Pal, A. J., Mayes, A. M., Rubner, M. F., Langmuir, 16(11), 5017 (2000).Google Scholar
5. Raab, M., Åcudla, J., Kozlov, A. G., Lavrentyev, V. K., Elyashevich, G. K., J. Appl. Poly. Sci., 80(2), 214 (2001).Google Scholar
6. Feng, C., Kimura, Y., Polymer, 37(4), 573 (1996).Google Scholar
7. Mizutani, Y., Nago, S., J. Appl. Polym. Sci., 72(11), 1489 (1999).Google Scholar
8. Pitois, O, Francois, B, Eur. Phys. J. B, 8(2), 225 (1999).Google Scholar
9. Hatori, H., Yamada, Y., Shiraishi, M., J. Appl. Polym. Sci., 57(7), 871 (1995).Google Scholar
10. Yan, Y., Hoshino, Y., Duan, Z., Chaudhuri, S.R., Sarkar, A., Chem. of Mater., 9(11), 2583 (1997).Google Scholar
11. Lin, W.J., Lu, C.H., J. of Membrane Sci., 198(1), 109 (2002).Google Scholar
12. Kahle, C.F., Ind. & Engi. Chem. Rese., 40(1), 33 (2001).Google Scholar
13. Mitrofanov, A. V., J. MoscowPhys. Soc., 9(2), 147 (1999).Google Scholar
14. Moore, J. A., Choi, J.O., Mater. Res. Soc. Symp. Proc., 158, 39 (1990).Google Scholar
15. Turberfield, A. J., M.R.S. Bulletin, 26, 632 (2001)Google Scholar
16. Kyu, T., Nwabunma, N., Macromolecule, 34, 9168 (2001).Google Scholar
17. Nwabunma, D., Chiu, H.-W., Kyu, T., J. Chem. Phys., 113, 6429 (2000).Google Scholar
18. Flory, P.J., J.Chem. Phys., 10, 51 (1941).Google Scholar
19. Huggins, M.L., J. Chem. Phys., 9, 440 (1941).Google Scholar
20. Dusek, K., J. Polym. Sci. C, 16, 1289 (1967).Google Scholar
21. Doi, M. and Edwards, S. F.,”Theory of Polymer Dynamics”, Academic Press, New York, 1986.Google Scholar
22. Thaweephan, P., Meng, S., Sigalov, G., Kim, H.K., Choi, S.H., Kyu, T., J. Polym. Sci. Part B: Polym. Phys., 39, 1605 (2001).Google Scholar
23. Flory, P.J., J. Chem. Phys., 18, 108 (1950).Google Scholar