Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-26T18:50:36.107Z Has data issue: false hasContentIssue false

Formation of PtSi Using Polycrystalline Si and Different Annealing Sequences

Published online by Cambridge University Press:  22 February 2011

Chin-An Chang
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, N. Y. 10598
Armin Segmüller
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, N. Y. 10598
Get access

Abstract

Formation of PtSi on As-doped polycrystalline Si is studied using different annealing sequences. An incomplete reaction between the Pt and Si is observed using a one-temperature anneal at 550 ° C, with unreacted Pt remaining in the film which is undesirable for the device processing. Using a three-temperature annealing sequence at 200–300–550 ° C in a N2-H2 mixture, a complete reaction is observed between Pt and Si, with no unreacted Pt detected. The results are similar to that using single crystal Si, except for the less-oriented PtSi formed. The three-temperature annealing process described has thus been shown useful to the fabrication of PtSi contacts at device areas containing either single crystalline or polycrystalline Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fraser, D. B., in VLSI Technology, edi. Sze, S. M. (McGraw-Hill, NY 1983), p. 347.Google Scholar
2. Murarka, S. P., Silicides for VLSI Applications, Academic Press, (1983).Google Scholar
3. Nicolet, M.-A. and Lau, S. S., in VLSI Electronics, Microstructure Science, Vol.6, ed. Einspruch, N. and Larrabee, G., (Academic, NY 1983), p. 330.Google Scholar
4. Chang, Chin-An, J. Appl. Phys. 58, 3258 (1985).Google Scholar
5. Chang, Chin-An, J. Appl. Phys. 59, 3116 (1986).Google Scholar
6. Chang, Chin-An, Segmuller, A., Huang, H.-C. W., Cunningham, B., Turene, F. E., Sugerman, A., and Totta, P. A., J. Electrochem. Soc. 133, 1256 (1986).Google Scholar
7. Chang, Chin-An, Cunningham, B., Segmuller, A., Huang, H.-C. W., Turene, F. E., Sugerman, A., and Totta, P. A., J. Vac. Sci. Technol. B 4, 745 (1986).Google Scholar
8. Chang, Chin-An, Segmuiller, A., Huang, H.-C, W., Turene, F. E., Cunningham, B., and Totta, P. A., J. Vac. Sci. Technol. A 4, 841 (1986).Google Scholar
9. Chang, Chin-An and Segmuller, A., J. Appl. Phys. 61, 201 (1987).Google Scholar
10. Ning, T. H., Tang, D. D., and Solomon, P. M, IEEE Int. Electron. Device Meet., Wash., D.C., 1980, p. 61; T. H. Ning and R. D. Issac, IEEE Int. Electron. Device Meet., Wash., D.C.,1979, p. 473.Google Scholar
11. Parrillo, L. C., in VLSI Technology, ed. Sze, S. M., (McGraw-Hill, NY, 1983), p. 445.Google Scholar
12. Chang, Chin-An, J. Appl. Phys. 58, 1412 (1985).Google Scholar