Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-10-01T08:51:41.389Z Has data issue: false hasContentIssue false

Freezing in Silicon at Large Undercooling

Published online by Cambridge University Press:  25 February 2011

P.A. Stolk
Affiliation:
FOM-Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands
A. Polman
Affiliation:
FOM-Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands
W.C. Sinke
Affiliation:
FOM-Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands
Get access

Abstract

Pulsed laser irradiation is used to induce epitaxial explosive crystallization of amorphous silicon layers buried in a (100) oriented crystalline matrix. This process is mediated by a self-propagating liquid layer. Time-resolved determination of the crystallization speed combined with numerical calculation of the interface temperature shows that freezing in silicon saturates at 16 m/s for large undercooling (> 130 K). A comparison between data and different models for melting and freezing indicates that the crystallization behavior at large undercooling can be described correctly if the rate-limiting factor is assumed to be diffusion in liquid Si at the solid/liquid interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Galvin, G.J., Mayer, J.W. and Peercy, P.S., Appl. Phys. Lett. 46, 644 (1985)Google Scholar
2 Thompson, M.O. et al., Mat. Res. Soc. Symp. Proc. 15, 181 (1985)Google Scholar
3 Larson, B.C., Tischler, J.Z. and Milis, D.M., J. Mater. Res. 1, 144 (1986)Google Scholar
4 Tsao, J.Y., Peercy, P.S. and Thompson, M.O., J. Mater. Res. 2, 91 (1987)Google Scholar
5 Bucksbaum, P.H. and Bokor, J., Phys. Rev. Lett. 51, 182 (1984)Google Scholar
6 Spaepen, F. and Turnbull, D. in Laser annealing of Semiconductors, edited by Poate, J.M. and Mayer, J.W. (Academic, New York, 1982), p. 15 ff.Google Scholar
7 Tsao, J.Y., Aziz, M.J., Thompson, M.O. and Peercy, P.S., Phys. Rev. Lett. 56, 2712 (1986)Google Scholar
8 Wilson, H.A., Proc. Cambridge Phil. Soc. 10, 25 (1898)Google Scholar
9 Frenkel, J., Phys. Z. Sowjetunion 1, 498 (1932)Google Scholar
10 Richards, P.M., Phys. Rev. B38, 2727 (1988)Google Scholar
11 Cox-Smith, I.R., Liang, H.C. and Dillon, R.O., J. Vac. Sei. Technol. A3, 674 (1985)Google Scholar
12 Jellison, G.E.; Wood, R.F. and Jellison, G.E. in Semiconductors and Semimetals Vol. 23, edited by Wood, R.F., White, C.W. and Young, R.T. (Academic, New York, 1984)Google Scholar
13 Custers, J.S. et al., these proceedingsGoogle Scholar
14 Stolk, P.A. et al., Mat. Res. Soc. Symp. Proc. 147 (1989), in pressGoogle Scholar
15 Polmanetal., A., to be publishedGoogle Scholar
16 Auston, D.H. et al., Appl. Phys. Lett. 33, 437 (1978)Google Scholar
17 Wood, R.F. and Geist, G.A., Phys. Rev. B34, 2606 (1986)Google Scholar
18 Geist, G.A. and Wood, R.F., Oak Ridge National Laboratory No. ORNL-6242 (1985), unpublishedGoogle Scholar
19 Polman, A. et al., Appl. Phys. Lett. 55, 1097 (1989)Google Scholar
20 Donovan, E.P. et al., Appl. Phys. Lett. 42, 698 (1983)Google Scholar
21 Thompson, M.O. et al, Phys. Rev. Lett. 52, 2360 (1984)Google Scholar
22 Turnbull, D., J. de Physique, Cl, 43, 259 (1982)Google Scholar
23 Mil'vidskii, M.G. and Eremeev, V.V., Sov. Phys. Solid State 6, 1949 (1964)Google Scholar
24 Shaskin, Y.M. and Griskin, V.P., Sov. Phys. Solid State 8, 447 (1966)Google Scholar
25 Grabow, M.H., Gilmer, G.H. and Bakker, A.F., Mat. Res. Soc. Symp. Proc. 141, 349 (1988)Google Scholar
26 Shimoji, M., Liquid Metals (Academic, New York, 1977), p. 193 Google Scholar
27 Thompson, M.O. et al., Phys. Rev. Lett. 50, 896(1983)Google Scholar